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_ST_CT

This dissertation treats analytically the dynamics of passively

damped, gravity stabilized artificial satellites. Methods are devised

to analyze the following phases of satellite evolution: (l) tumbling

motions after la_ch, (2) capture into a bounded libration motion,

(3) stability of equilibri_ solutions, (4) d_ping of the l±brat±on

motion. These methods are applied to three typical satellite designs

of current im_rtance: Vert±stat, Beam, and TRAAC.

The results of the specific analyses of passively damped satellites

show that the methods are capable of handling non-linear prob_ms of

considerable complexity. The methods tend to give much insight into

the qualitative behavior of systems; they also provide useful n_erical

data with only hand computation.

Passive damping techniques are evaluated on the basis of the

transient response of several specific designs. Certain conclusions

about physical structure are drawn from the response formulae.
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CHAPTER I : INTRODUCTION

A. PASSIVE SATELLITE ATTITUDE CONTROL

In the design of spacecraft there is considerable need for attitude

controls which are very reliable and simple with a high probability of

long life, but which do not necessarily control the attitude to a high

accuracy. This requirement can often be satisfied by mechanical dampers

that do not involve man-made energy storage, generation, or conversion

devices; these are called passive satellite attitude control systems.

This dissertation is in large measure directed toward a better under-

standing of the dynamics of such systems.

There are many kinds of passively-stabilized space vehicles, in-

cluding, spin-stabilized vehicles, gravity-gradient stabilized satellites,

and magnetic-field-oriented satellites. In each of these a physical

phenomenon gives position stabilization which, when coupled with a

damping device, leads to convergent, stable motions. The various damp-

ing devices adopted usually depend upon the dissipation of energy,

either due to friction between moving parts or to the interaction of a

field (e.g., magnetic) with the satellite.

This dissertation will focus attention upon the motions of the very

useful gravity-gradient stabilized satellites and upon the methods of

damping their motions. These satellites tend always to point the same

axis toward the center of the earth; the same physical effect causes
*

the Moon always to turn the same face toward the Earth.

The history of investigation of gravitational effects upon a rigid

body dates to Newton, who first realized that both the "precession of

the equinoxes" and the attitude motion of the Moon (lunar librations)

could be explained on the basis of the gravity-gradient torques exerted

on a body in the natural gravity field. The problem of rigid body

The gravitational effect on bodies can be understood by consider-

ing a single rigid body in a Newtonian force field and noticing that

separate particles of the body experience different forces (because of

their differing distances from the center of attraction); this causes

torques on the body and these torques may be used for the stabilization

of the body's attitude.

-1-



motion under the influence of gravity torques has been well known since
Newton (TISSERANDl, LAGRANGE2, ROUTHl, PLUMMERl) but the investi-

gations were of a very special nature, dealing with a small class of

bodies performing motions of a type known by prior observations. The

objective of most of the ancient investigations of attitude motion was

to verify the universal law of gravitation with high accuracy; those

calculations, therefore, tended to be characterized more by precision

than by the diversity of phenomenastudied qualitatively.

Modern investigations are more concerned with systems consisting of

several connected bodies, performing muchmore general motions which

only need be predicted approximately. The history of the various

developments of satellite attitude control devices until 1962 is out-
lined in the dissertation of D. B. DeBra (DEBRAl) and in the WADD

report edited by R. E. Roberson (ROBERSON1).

The first known analysis of a passive control device using externally

joined or connected bodies is that of J. V. Breakwell (BREAKWELL1),

who by early 1954 had analyzed the attitude motions in orbit of a pair

of rigid bodies connected together by a torsion bearing having viscous
friction. This particular design was called the "hinged satellite"

and was patented by Breakwell and R. E. Roberson. The design is cer-
tainly similar to those vehicles now called '_ertistats." Breakwell

analyzed the transient motion and the forced motion excited by a nearly

circular orbit; he found that the motions could be dampedunder certain

stability conditions and that, for certain settings of the parameters,
"vibration absorption" could be achieved in such a manner that the 'Rain

body" would stand still while the second body movedin response to the

orbit excitation. This analysis, which has not been published in the

literature, stimulated parts of the present work.
Since about 1959 there has been considerable effort directed toward

the problem of passive gravity stabilization using connected systems of

bodies. Oneof the earliest investigations in this period was that of

R. E. Fischell, et al., at the Applied Physics Laboratory of the Johns

Hopkins University (FISCHELL°I, FISCHELL 2, FISCHELL 3). Fischell

developed two designs which were both orbited. These use a limber spring

-2-



for damping (elastic hysteresis) as well as ferromagnetic damping rods.

Kamm (KAMM 1) suggested the '_ertistat" design which was later investi-

gated by Tinling and Merrick (TINLING 1) and by Bell Telephone Laboratories

engineers (FLETCHER 1, PAUL 1). The '_ertistat" design, similar to

Breakwell's "hinged satellite," looks quite promising. These designs

and others are discussed in detail in Chapter VII.

B. PROBLEMS REQUIRING DYNAMIC ANALYSIS

One convenient way of illuminating the dynamical problems in

designing a passive attitude control system is to consider the evolu-

tion of a particular satellite from launch to death. This evolution

takes place in the following phases: (1) launch and separation of the

satellite from the final stage booster rocket, usually in tumbling

motion, (2) decay of the tumbling motion either by internal dissipation

or by special momentum removal devices, (3) " " " " "acquisition or 'hapture"

of the libration region -- the beginning of librations, (4) damping of

the librations to a stable equilibrium point, (5) steady-state motion

about equilibrium in response to torque and force disturbances (occa-

sional tumbling due to meteoroid impacts), (6) death of the satellite

because of component failure or orbit decay. Phases _2)-(5) each imply

a need for particular techniques for analysis of the salient features

of the motion.

The initial angular rate after launch may be such that the satellite

tumbles, i.e., one or more of the body angular rates has a constant or

slowly-decaying component. The vehicle design may incorporate some

special scheme for damping the tumbling motions or may employ the

passive attitude control system for this purpose. If the latter method

or a combination of the two methods is adopted, there arises a problem

of analysis, whether or not a computer is used, because the equations

of motion are non-linear and the machine times for direct integration

can easily become excessively long. A method of perturbation analysis

is developed in Chapter IV using the "high" pitch tumbling rate approxi-

mation as a generating solution. This leads to some interesting results

and begins an essentially new line of analysis in this phase of satel-

lite dynamics.
--3--



The libration motion after '_apture" is analyzed in Chapter VI

using a light-damping approximation which is quite valid for passive

attitude control systems of interest. This approximation allows use

of an energy method which handles non-linear damping forces. The

method is especially convenient and effective for approximating the

effects of elastic or magnetic hysteresis forces.

The stability of the equilibrium points of the equations of motion

is investigated in Chapter Ill by employing Lyapunov's direct method.

This application leads to a method of determining asymptotic stability

for mechanical systems with damping and gyroscopic forces. The regions

of "capture" are also rigorously established using a technique based

upon Lyapunov's method.

The effectiveness of an attitude control system in steady-state

oscillation is determined by a small-oscillation analysis of forced

motion due to disturbances. In case the disturbances are "large" the

linear methods break down and possible instabilities may occur, giving

rise to large excursions away from equilibrium. A large-oscillation

analysis of the equations of motion of a rigid body in an eccentric

orbit about an oblate body was carried out by DeBra (DEBRA l) using

digital quadrature. At the present time the only effective technique

for investigating the large-amplitude oscillations of satellites seems

to be digital quadrature.

Connected vehicles, i.e., vehicles with rigid or elastic members

joined to a main body, are quite useful for obtaining stabilization

and damping of gravity-gradient satellites. Chapter II discusses

methods of writing the equations of motion and the energy expressions

in a very convenient manner, using general vector expressions encompas-

sing arbitrary systems of bodies with gravity forces acting. The

analysis of several important specific connected satellites using

passive stabilization is carried out in Chapter VII. The methods

outlined above are used to advantage in the analysis of the examples.

-4-



C. CONTRIBUTIONS

In this dissertation the author will present an exposition of some

significant problems affecting satellite attitude control using passive,

gravity stabilization and achieving damping by means of connected sys-

tems of bodies. New methods of analysis will be presented to cope with

certain of the problems. There are a number of essentially novel

examples which both illustrate the analytical methods and lead to con-

clusions of engineering significance. It is hoped that a proper mix-

ture of general techniques and examples will expose the salient features

of the problem of passive attitude control in an effective way.

The following are the major contributions of the dissertation:

1. A discussion of the dynamics of satellites consisting of con-

nected bodies is given. General vector expressions for the equations

of motion are presented, and the energy relations for arbitrary satel-

lite systems of bodies under the action of gravity forces are given.

(Chapter II)

2. Examples of connected, passive, gravity-stabilized satellites

are analyzed to determine their usefulness and properties, and also to

illustrate certain analysis procedures. An example of a flexible body

under gravity forces is given. (Chapter VII)

3. New methods of analysis are devised and applied to the above

examples. These methods include: (a) a technique for approximating

the motion of a tumbling satellite with internal dissipation, (Chapter

IV), (b) a perturbation approximation for light non-linear damping

based upon the undamped motions (Chapter VI), (c) an application of

Lyapunov's stability theory to mechanical systems with damping, and a

detailed discussion of the available methods for treating satellite

stability and capture problems. (Chapter III)

4. A complete solution of the stability problem in the large for

the symmetrical satellite under gravity forces is presented to illustrate

the techniques of stability theory as they apply to satellite mechanics.

(Chapter V)

-5-



CHAPTER II: EQUATIONS OF MOTION AND ENERGY THEOR]_iS

A. INTRODUCTION

This chapter contains general theorems useful in the mathematical

description of satellite motion. These theorems place the general

equations of particle motion in a form convenient for describing sys-

tems of bodies.

There are two distinct methods of deriving the equations of motion

of a mechanical system: (a) the vector method based directly upon

Newton's laws of motion and (b) the Lagrangian or energy method based

on the principle of virtual work or Hamilton's principle. Each of

these methods finds application in this work, but usually the Lagrangian

method is preferred because of the automatic elimination of holonomic

constraints. Often, however, the ease of conceptualization and mani-

pulation of the vector method makes it superior. Vectors are used to

great advantage in this chapter for both the Newtonian equations of

motion and the energy expressions.

B. THEOREMS ON SYSTEMS OF RIGID BODIES: ENERGY THEOR]_]_iS

Because the use of Lagrange's equations implies a need for the

kinetic and potential energy expressions, the energy expressions will

be derived here for systems of bodies in a gravitational field. Two

forms of these expressions will be given, one in which energy is ex-

pressed in terms of vectors from the system center of mass to body

centers of mass, and one in which energy is expressed in terms of

vectors from the center of mass of a '_ain" body to other body centers

of mass. The latter expressions are very useful in subsequent appli-

cations.

Consider a system of particles with center of mass at a point C

described by a vector Rc with respect to a Newtonian reference frame

_ as in Fig. 2.1. This system of particles is split arbitrarily into

sub-systems B (5 = O,1,...,N). Each sub-system, B , has a center

of mass described by a vector R _ originating at C. The particles

of B are of mass dm (#) located by a vector _ with respect

to the center of mass of BG.

-6-



C.Mo

c

FIG. 2.1. GEOMETRY OF A SYSTEM OF PARTICLES
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These facts are summarized by relations defining the _.t_rJsof mass:

_ = 0C: m S

G

BO_: /dmG _G = 0

B
G

where

_ f = _mM = draG G

G B G
G

R°_ = R_ _ _

(2.1)

(2.2)

The integrals are to be taken in the Riemann-Stieltjes sense. If

mG(pG)__ is differentiable then dm G can be expressed as DQ_G)dv(_)

where D(_) is the density at _ and dv is the volume element at

G

We may now write down the kinetic energy expression

2 -- dmG_G)

G B
G

(2.3)

T= M (_c)22 -- + 21 _mG(_G)2_ + 21 _ / _G)2dm G
G G B

G

Here Rc is the vector distance from the origin of _ to the point C.

The dots denote differentiation with respect to time in inertial space

(_/ -frame). The second of (2.3) follows from the first using the

definitions of the centers of mass given by (2.1) and (2.2).
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It can easily be shownthat the gravity potential energy of the

entire system of particles is

_ / k dm(_(_)V = - (2.4)

B IRC +--R_+_[

Expanding the denominator of (2.4), keeping terms up to order (p__/IR_,)2_' "

we get

V

kM + k { 1
IRcl I_RC[3 - _ tr_ +

3 C.A. C\

(2.5)

I Cl3 tr + • .
C_

where the dyadics _ and _ are defined as

O_

B
O;

(2.6)

These are the moments of inertia which will be important throughout

this discussion. Here the notation _c means the unit vector R C/IRCl,

tr means the trace of the dyadic following and 1 is the unit dyadic

or idemfactor. (The theory of vectors and dyadics is given in GIBBS 1.)

The above expressions for T and V refer to the vectors RG

and therefore describe the system most naturally in coordinates relative

to C. It is often useful to use coordinate vectors with their origin

at one particular body. Call this body B and the location of its
O

center of mass, R °. It can easily be seen using (2.1), (2.2), (2.3),

(2.5), etc., that
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T= M ([c)2_ +

\ c_ B
I
I

1
+ -

2

_RCl I_Rcl3
I - O;

1
_ tr n_+

-{. --

I c_3R i
- cz,_

-}

L %_ _oo._o_

_ " •

+_ " c_"

(2.7)

(2.8)

where the tensor is defined as

-_ = R0_0. R_0 _i -R 0_0 R_0
_ ....

(2.9)

and the matrix P called the "reduced mass matrix,

PO_ = mczSO#3 " mm_____M

t,

is defined as

= x{_ = _,)
c_

(2.1o)

= o(c_ 4 fB)

It is seen, then, that the expressions (2.7) and (2.8) constitute

another way to write the equations of T and V, which is useful in

certain cases.

C. THEOREMS ON SYSTEMS OF RIGID BODIES: VECTOR EQUATIONS OF MOTION

The equations of motion of a system of rigid bodies may usefully

be written directly from considerations based on NewtonVs second law

of motion. In this section equations are written using the two forms

of expression given in the preceding discussion of energy.
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It should be pointed out that forces of constraint must be included

in the equations of motion and eliminated algebraically. This is not

so in the Lagrangian method for holonomic constraints (LANCZOS l,

pp. 80-86).

Using the definitions of (2.1) and (2.2) it is desired to describe

the dynamics of a system of orbiting rigid bodies in terms of vector

equations of motion derived from Newton's second law of motion for each

particle which is, for a mass dm and force dF _,

dm (E_"c + _G + _<_)= d_F_(_)
(2.n)

If we sum over all particles and bodies, we get, by the definitions

of centers of mass,

This gives the center of mass motion or the orbit motion; there are

three scalar equations implicit in (2.12).

Integrating (2.11) over B only, gives

m(B + --_F_ f
B

m ._ = FG m F
5-- - M

(2.13)

There are N+I bodies and therefore (2.13) represents 3N+3 scalar

equations of motion.

Taking moments around C, we get, after summing over all panticles,

O_ B
C_

B
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Using the definitions of the centers of masswe get

where

_CZ+ L=M

B

L

(2.14)

M

B

Vector equation (2.14) represents three scalar equations.

The remaining equations are obtained by taking moments about the

center of the mass of each body giving

-- = __ = }D X dF__C_

B
C_

Equations (2.12-15) give us

bodies (and/or particles).

6(N+I) + 3 equations for N+I rigid

tions for vectors

gives

or

where

It remains to calculate the expressions implied in the above equa-

R _ = R_0 • R O. This process, using the matrix PO_'

Pa_ ]{_0 = ra _F ma

(2.15)

(2.16)

(2.17)

-12-



The vector R_- is the radius vector from the center of mass of B-- o
to the center of mass of B . Equation (2.17) is more convenient forG
numerical integration and only requires one inversion of an N x N

matrix PO_3 " Also using P_ we may write

_L= _ Pc_ -R°_ x __° (2.18)

For the cases where gravity forces and torques are important we

may calculate these effects on the bodies. For each particle we have

a force

dFG = - _E-Rc + R_ + pff]
_ l[_RC + _ROC + _ ]13 (2.19)

using the binomial expansion of the denominator of (2.19) and keeping

only terms up to order (d/IRCl) 2 (where d is the largest linear

dimension of the system of particles and rigid bodies) we get for the

various forces and torques

F = _ kM Rc

-g IR_Cl3 -

N

FG m_ F - k _ ^ ^ ^
--g - _-g iRC[3 ,__ Po_ -R_° " (_ - 3RCRC)

-- _----D

TO_ _ 3k _c x •]i0_ _c

-g i_Rca3

3k
M = TC_+ 13--g --g IRc

_CxA. _c

(2.20)

Ta+ x
-g iRc13

O_ - ' g_, [3
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We see that the subscripts "g" denote the gravity parts of the total

forces and moments acting. We get the complete equations of motion by

combining (2.20) with (2.12-18).

In summary the equations of motion of the system of bodies of

Fig. 2.1 are (sums over 5, _,y = 0,1,2 ..... N):

Center of mass motion (3 equations),

M _c = _, F_ = F--app lied (2.21a)

Moments about each body center of mass (3(n+l) equations),

- - -_ppliedjRcl3
(2.21b)

Moments about composite center of mass (3 equations),

-- -- -- --applied

3k ^ [Z_]i_+ IRCl3R° +

(2.21c)

Relative motion of body center of mass with respect to main body (3 N

equations),

- = o_ - - -F F-
applied

k _ p-1 RrOIRCl3 a_ %r-
- _,y

/%

• (3RCRc _ _)

(2.21d)
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tn total there must be at least 6(N÷l) equations to describe

the motion of (N+I) bodies. We have, including all the previous

equations, 6(N+I) + 3 equations of motion. This means we can view

three of these as redundant. This fact allows a freedom of choice of

mathematical description; all the 6(N+l) + 3 equations will be sat-

isfied, however, if 6(N+I) equations are satisfied.
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CHAPTER III : CONCERNING THE STABILITY THEORY OF MECHANICAL SYSTEMS

A. INTRODUCTION

The concept of stability is an intuitive one to most people who

care to reflect upon it. Since it is quite intuitive, it might be

expected that the history of stability theory would be old; this is,

in fact, quite true. Lagrange observed that stability of a mechanical

vibration can be determined by observing the behavior of the potential

function near an equilibrium point. He deduced that a sufficient con-

dition for stability of such a system is that the potential be minimum

at equilibrium. Dirichlet (LAGRANGE 1) proved this theorem rigorously

and Thomson and Tait (THOMSON 1) indicated an extension to systems

with dissipation. Poincar_ (POINCARE/1) used these theorems to dis-

cuss problems in celestial mechanics using his bifurcation theory.

It remained, however, for Lyapunov (LYAPUNOV 1) to rigorously state

and prove the main theorems of this energy approach to stability.

His treatise appeared in 1895 and set the stage for more recent in-

vestigations by Russian and American mathematicians (MALKIN 1, CHETAYEV 1,

KRASOVSKII 1, KAIEAN l, LEFSCHETZ 1). In summary, the main ideas of

stability theory are intuitive and old, but their rigorous incorporation
/

into mathematics was largely due to Lyapunov and Poincare about 1900.

In recent years engineers in the automatic control systems field

(KAIMAN 1) have found the stability theorems of Lyapunov's direct (or

second) method to be useful. Application of the method to actual

problems has been impeded by the difficulty of constructing certain

functions. This difficulty can be circumvented in mechanical systems

by choosing the Hamiltonian function as a Lyapunov resting, function.

This is usually the same as choosing the total energy except in certain

systems involving rotating or cyclic coordinates. It happens that these

are the systems of interest in space dynamics problems and therefore

a clear understanding of how easily to apply Lyapunov's direct method

to the multiplicity of space dynamics problems has not been common.
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This chapter attempts to give a clear exposition of the application

of Lyapunov's direct method to mechanical problems. This includes a

theorem on damped systems which is very useful and which leads to

certain results in the automatic control of mechanical systems. The

testing of a function for positive definiteness is discussed because

it is crucial in application of the basic theorems. In this connection

the bifurcation theory of Poincare is introduced in a simplified form_

a form which is nevertheless sufficient for the present purposes.

Examples of the application of the theory are given in connection

with the material of Chapters IV_ V_ and VII.

B. THE EQUATIONS OF MOTION IN MECHANICS

The equations of motion of a mechanical system take a very special

form, a form elegantly expressed by Hamilton's canonical equations. Let

us describe the system by a state vector x, valid in a region R.

This state vector has components (pl,P2,..._pN_ql,q2,...,qN) and

describes the motions completely. If x is given at some initial
m

time, then w given forces Qi acting on the system, the motion of

x(t) is determined uniquely for all subsequent instants.

The equations of Hamilton are

Pi =" -- + Q1

(i = 1,2,3_...,N)

(3._)

where H = H(p,q,t) is a scalar called the Hamiltonian. If the sys-

tem is described in terms of a kinetic energyp T, and a potential

energy, V, the Hamiltonian is defined as

(3.2)
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where, L = T - V is the Lagrangian. L is to he viewed as a func-

tion of q and q and Pi = _L/Oqi" The space of Pi is called

"momentum space" and the space of qi is called "configuration space,"

It is important to calculate the total time derivative of the

Hamiltonian. This is from (3,1) and (3,2)

N

i=l

N

H- at + Qi qi

i=l

(3.3)

The term _H/_t is due to time varying parameters in H and the term

N

_, Qiqi power into the system by forces not included in the
is the

i=l

Hamiltonian. This second term can be written

_R k

-
i k,i

where FJ is the force on the "k-th particle" and Rk(q,t) is the

position vector of the "k-th particle" in inertial space coordinates.

The energy theorem for the inertial space representation is E = T + V =

_ F k "k I (_Rk/_qi)qi
_ • R , where Rk = _Rk/_t + _ is the velocity.

k i

If the system is represented in terms of a coordinate system qi

that depends on by a relation = _ t), that is an explicit

function of time, then we may write

_R k

F - I{ = _ Fk"- _t--

k

(3.4)
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and, integrating,

E J H = Fk_ • t_--dt

k

(3.5)

we see that E - H is a non-zero function of time, in general. This

means that when using generalized coordinates_ qi' to describe a

system's configuration, we must distinguish between _ and H.

C. THE NATURE OF THE HAMILTONIAN IN MECHANICS

It is important to investigate the properties of the Hamiltonian,

H, in mechanical systems problems. Because certain momenta are con-

stants of the motion (_L/_qi = 0; Pi = _L/_qi)' and because we may

use rotating coordinate frames, the kinetic energy often takes the

form (Appendix A)

N N

j, _=i j=l

(3.6)

where the %8' _j' T are functions of the qj only and 6j, y are

"gyroscopic" terms. If we form H using (3.2) and (3,6), we get

N

aj_qjq_ + V(q) -

j ,8=1

If we define the following terms

N

T2 i V "_ ° °
= 2 L _J_qJq_

j ,8=1

N

T1 = Z 8JqJ

j=l

1

TO = _ Y(q)
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(3.7) becomes (T = T 2 + T 1 + T O )

U

H = T2 + U (3.s)

A

is defined as U = V - TO and is called the "dynamic potential."

It is important to note that

E - H = T 1 + 2T 0.

This means that there is a difference between E and

in time for "gyroscopic" systems (see result of (3.5)).

(3.9)

H that varies

D. THE DIRECT METHOD OF LYAPUNOV

We are concerned with stability about a point of equilibrium de-

fined by the vector x and the equation of motion, f(x ) = 0.*
--o m --o

This is a possible motion for the system of (3.1), and it is disturbances

about this motion that we wish to investigate. It is proper to intro-

duce the definitions of stability here and then discuss them later.

A system is said to be stable if it obeys (3.1) and whenever, given

any e > 0, there is an _(e;t o) > 0 such that if for a motion

0(X(to);t) we have ll_(t o) - _olI < q then ]I0(_(to);t) - Xoll < e for

any t > t .
o

This definition means that, given any subregion R_R, we can
g

always find a small enough initial condition so that the solution, _,

remains in R . If we cannot find such an initial condition the motion
E

is said to be unstable. If the choice of _(e;t o) is independent of

to, then we say the system is uniformly stable. The motion is said to

be asymptotically stable if it is stable and if in addition

llg( (to);t) - 0 as t
It is necessary to define a "positive definite" function.

function of the state vector, W(x),

region S: (a) W(x = 0) = 0, (b)

If a scalar

obeys the following relations in a

> 0 (i[ il 0)

The equations of motion (3.1) are written x = f(x).

_(x(t );t) is a "motion," x, of x = f(x) starting at
_ _ 0 ....

x- x(t o) = O(X(to);to).

t = t ,
o
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it is called positive definite in S. If it obeys (a) and if W(_) < 0

Ii_II _ 0) it is called negative definite in S If the function W(x)
IL_II • --

change_ sign in any neighborhood of _ = 0 and if W(O) = 0 it is

called sign variable. If (a) holds but (b) is W(x) > 0 (II£II _ 0) the

function W is called positive semi-definite.

With the above definitions the main theorems of Lyapunov may be

stated.

Theorem I. If for the differential equations and conditions (3.1) and

(3.2) it is possible to find a scalar function W(x), positive definite
m

o

in S _ R, whose total derivative with respect to time, W, is negative

semi-definite in S then the motion _(x(t );t) is stable.
o

Theorem If. If for the differential equations and conditions (3.1) and

(3.2) it is possible to find a scalar function WI(_), positive definite

in S _ R, whose total derivative with respect to time, W1 is nega-

tive definite in S then the motion _(X(to);t) is uniformly asymptoti-

cally stable.

Theorem III. If for the differential equations and conditions (3.1)

and (3.2) it is possible to find a scalar function W2(_) such that

total time derivative, W2' is negative definite and thein R its

function itself is sign variable or negative in R then the motion,

g(x(t );t) will be unstable.
-- O

The preceding discussion has been rather formal because it is

necessary to take care in defining the concepts involved. The proofs

of the above are to be found in Mg!kin (MALKIN i).

excellent geometrical discussion of the theorems.

that the functions W are energy-like functions.

Lyapunov function.

Malkin has an

It will be seen

W1 is called a

E. APPLICATIONS OF THE DIRECT METHOD TO MECHANICAL SYSTEMS

In the application of the direct method of Lyapunov to mechanical

or Hamiltonian systems we make use of the Hamiltonian function as a

possible Lyapunov function. This uses the intuitive idea of the

Lyapunov function as an "energy-like" function. It turns out that H

has nice properties that make it an ideal Lyapunov function for me-

chanical systems.
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The equilibrium points of a mechanical system can be found by

applying Lagrange's equations and setting the generalized velocities

to zero (by definition of an equilibrium point). This gives the

following conditions on the qi"

_U

1

= 0 (i = 1,2,...,N) (3.10)

where U = V - T O as explained in Section C.

The subsequent analysis assumes that the above equations are satisfied

by the condition qio = 0 and that the system is stationary, i.e.,

5H/_t = 0.

i. Systems with Damping

For systems with damping we can make some strong and surprising

statements regarding asymptotic stability. A system is said to have

damping if the power into the mechanical parts, P, is negative definite,

i.e°, energy is always being lost except at equilibrium. This is the

key assumption of the stability theory of mechanical systems with damp-

ing. Notice that we defined

N

P = f Qiqi •

i=l

With the above statement as a hypothesis that is always fulfilled in

well-designed systems (natural or man-made)_we state:

Theorem IV. If for the (autonomous) mechanical systems described by
Q

the differential equations (3,1), the power, P = H, is negative

definite in a region S of the (pi,qi) space, then the motions

are (a) asymptotically stable if H(p,q) is positive definite in S

or (b) unstable if H(p,g) is sign variable or negative definite in

S.

Par_ (a) of the theorem is proved using Theorem II and identifying

H = W I. Part (b) is likewise proved by letting H = W 2 in Theorem III.
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It can now be clearly seen that the positive definite property of H

is necessary and sufficient for asymptotic stability if P is negative

definite.

It is therefore obvious that H is a suitable Lyapunov function

and that stability depends upon the testing of H for positive definite-

ness. To prove H is positive definite we test it directly or notice

the formula (3.10) which is

H=T + U
2

This allows us to use the fact that T 2 is a positive definite quadratic

form in the qi based upon its definition via (3.6). The conditions

for positive definiteness of H are then satisfied if and only if U

is a positive definite function of the qi" This reduces the theorem

to a test of the "dynamic potential function," U, for positive

definiteness in the qi' The above reasoning can be stated as a

corollary to Theorem IV.

Corollary: If the hypothesis of Theorem IV is satisfied, then the

motions are (a) asymptotically stable if U(q) is positive definite

in the qi in S or (b) unstable if U(q) is sign variable or

negative definite in S.

The proof is immediate from Theorem IV if it is observed that

H = T2(q, _) + U(q) where T 2 is a positive definite quadratic form

in the qi" H is positive definite if and only if U(q) is positive

definite by virtue of the fact that if all the qi are zero then T 2

is zero.

2. Systems without Damping

If P = 0 we call the system undamped• In this case the

expression H = 0 holds and the system is said to be conservative.

If we take H as a possible Lyapunov function we see immediately that

Theorem I gives the result that if H is positive definite then the

system is stable• The theorem on instability (Theorem III) does not
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apply because of the conservative nature of the system. One may,

however, construct a function W2 and prove that if T = T 2 then

the positive definiteness of H is necessary and sufficient for

stability but, if the system is gyroscopic, only Theorem I can be

applied. This is Chetaev's theorem (MALKIN1, CHETAYEV 1). The

application of Theorem I to the conservative case is called Lagrange's

Theorem.

3. Bounds on the Convergence Region

While the theorems give us much useful information about

stability, the nature of the definitions of stability make such answers

of the "yes or no" variety; furthermore, the stability defined above

is only "local" in nature. Another question one must ask is: How

large is the region of convergence ScC. S? This is a difficult question,

but we may establish useful lower bounds to S , i.e., establish sets
c

S' C S _S where we are sure to have convergence to the particular
c c

equilibrium point in question.

Consider the equation (3.3) where P < 0, and integrate it

H=P

t

H(p(t), q(t)) = H(p(O), q(O)) + /P dt

o

(3.n)

then clearly (let H(t = 0) = H , H(p,q) = H)
o

U < H < H (3.12)
-- -- O

If we imagine closed, bounded surfaces of H = H or U = H and if
o o

U and H are positive, these surfaces will enclose the equilibrium

point, Pio' qio" The H surfaces will enclose the equilibrium point

in the full p,q-space and the U surfaces will enclose the equilibrium

in the q-space. These surfaces are bounds on the region of convergence
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Sc, since if H > Ho for some fixed Ho the inequality (3.12) is

violated, leading to a contradiction° Usually the dimensionality and

other practical considerations make it expedient to use U and limit

ourselves to the configuration space. A consideration of the convex

surfaces, U or H gives a bound_ _'c' on the convergence region

S'_S
which is pessimistic, but nevertheless useful, i.e., c c"

F. USE OF THE THEOR_S ON STABILITY

The hypothesis of Theorem IV is that the power, Hp is negative

definite with respect to either (pi,qi) or (qi,qi)o This hypothesis

is not fulfilled in the majority of apl)lications but it is equally

effective for the power to be negative semi-definite if certain con-

ditions are fulfilled. These conditions amount to having the equations

I! tt

of motion coupled ; that is, every phase variable is dependent upon

the phase variables contained in the power expression. A system which

t! TT

illustrates this question is the following gyroscopic system.

ql + _ ql + hq2 = 0

• . 2 " • (3o13 _
q2 + _2 q2 - hql = _ bq2

• 2 "2 2 2 2 2

H = !2 ( ql + q2 + _°1 ql + _°2 q2 )

H=- bet 2 b> 0

2 2

Here ql,q 2 are the independent position variables and _i' w2' h,

and b are parameters. Notice that the Hamiltonian, H, is positive
o

definite for _; > 0, _2 > 0_ while H is only semi-definite, ioeo,

it goes to zero for phase points not at the origin. Notice further

that if h = 0 the system is composed of two decoupled harmonic

oscillators with damping in only one of them° Thus, in this case the

ql coordinate does not damp down but continues to oscillate as a
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harmonic oscillator while the q2 variable dampsdown. If h _ 0

the system is "coupled" and both ql and q2 decay to zero. These
anomalousresults are directly related to the semi-definiteness of H.

Kalman and Bertram (KALMANi) have covered the above case with a theorem

(see also LEFSCHETZ1).

Theorem V. The condition of the negative definiteness of P in Theorem

IV may be replaced by (a) H(p,q) _ 0 for all pi,qi , and (b)

does not vanish identically for motion not at the origin of phase space

(equilibrium point).

This means that if we set P identically equal to zero (equal to

zero for all t > t ) that it will imply a particular solution which
-- o

is the equilibrium point and only this solution will be possible. In

(3.13) we see that P = 0 implies that q2 = 0 and in the second

differential equation (if h _ 0) that ql is identically equal to

zero_ thus the origin is the only point in phase space where H

vanishes identically. If h = 0 then this is not so and we see that

the first differential equation holds regardless of the identical

vanishing of H. This modification to Theorem IV is quite important

for applications of the theory of Section :D and Section E to mechanical

systems°

The above theorem has a corollary of considerable power and useful-

ness for the qualitative discussion of mechanical stability.

Corollary: If a system obeys the hypotheses of Theorems IV or V, its

stability behavior cannot depend upon the magnitude or the analytical

form of the power loss function, P0

The proof is immediate, if it is recognized that the test of Theorem V

for stability reduces to examining the function H (or U) under the

hypothesis of negative P. The function H, however, is determined

by the mechanical part of the systemand not by the damping mechanism.

This last fact was shown in Section B, Part 1 when the expression for

H was derived from the kinetic energy of the particles and the potential

energy with no reference to the damping law. The damping law only enters

in the generalized forces Qi of (3.3) which only effect the power loss

function P.
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If a system of bodies, acted upon by forces derivable from a potential

function, is to be investigated for stability on the assumption of a loss

of energy due to damping which is dependent upon the motion of the bodies,

then the stability cannot depend on the amount of damping present. The

stability only depends upon whether or not the power function, P, is

negative. One of the consequences of the above statements is that if

we are faced with an unknown dissipation mechanism which always keeps

P < 0, then we can be sure that the results of a test of U(q) for

positive definiteness is satisfactory for determining the stability

behavior of the system.

@. TESTING U FOR POSITIVE DEFINITENESS -- BIFURCATION THEORY

As discussed in Section E, the stability of mechanical systems re-

duces to a "testing" of U for positive definiteness. This test is

well known in the theory of quadratic forms and leads to a simple alge-

braic criterion for positive definiteness. Consider

N

U = _ aijqiqj + U 3 + U 4 ÷...

i,j=l

(3.14)

aij = _2U/_qi_qj and Un is an n-th degree form, homogeneous
where

in the qi" For a vanishingly small displacement the positive definite

property of U is equivalent to the matrix a . being positive definite
13

(BE_ l) or

DI =a'">011

all

D 2 =

a21

(i = 1,2,..o,N)

a12
>0

a22

(3.15)
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ii 12 "a a ..... aij

m .

J

a21

a.
jl

(j = 1,2,...,N)

a . .

3J

> 0

If D N = 0_ the matrix aij is singular; then the higher orders in

U must be investigated.
n

The testing of U is interesting to discuss in another way , a way

/

due to Poincare. Consider a diagonalizing transformation which reduces

a to a sum of squares. If k (i = 1,2,o..,N) are eigenvalues of
ij i

' are components of a new coordinate frame, it is pos-
aij and if qi

sible to reduce U 2 to the form

N

U 2 = _ ki(q_ )2

i=l

In this frame the determinant, DN, of

BELLMAN i).

D
N

N

= i___ k'1 =

a.. is left invariant (see
ij

(3.16)

This relation (3.16) is extremely important in that it specifies the

way in which the system stability (for D N _ 0) changes. If the

k are all positive, % > 0 and U 2 is positive definite. If anyi

of the k change sign this change of sign is reflected in D N1

directly and it changes sign• Thus the examination of (3.16) evaluated

at the equilibrium point in question suffices to determine the points

in the parameter space and the space of qio where stability changes

occur. A point at which D N = 0 is called a "point of bifurcation."

This is extremely useful in many investigations of stability behavior

via Lyapunov's techniques in mechanical systems and will be illustrated

by Chapter V.
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CHAPTER IV: ON THE TUMBLING MOTIONS AND CAPTURE OF AN ARTIFICIAL SATELLITE

A. INTRODUCTION

This chapter introduces a new class of problems involving the damp-

ing of the tumbling motions of artificial satellites. Simple examples

of these problems are treated to indicate a general approach to the cal-

culation of the motions and decay rate using perturbation theory. The

use of perturbation methods may be necessary because of the extremely

long time intervals of the solutions in comparison with the length of

integration steps necessary for a digital integration of the equations

of motion. Analog computation methods are of little use for the same

reasons, i.e., the long times of solution necessary to obtain the desired

solutions allow the amplifiers to drift and this causes large errors.

The system to be studied is a satellite with a tumbling rate in the

orbit plane, of one or more times orbit rate, which is to be damped by

internal friction. That is, the effect of the gravity torques on the

system is to disturb internal moving parts and thus dissipate energy,

causing a gradual slowing of the tumbling until the satellite is captured

into the libration region.

If one considers an orbiting system of particles with internal damp-

ing, and if one neglects the gravity and other external torques, he may

use the law of conservation of angular momentum to show that after a

period of transient decay of the relative motion of particles, the

general motion will be a tumbling motion with no relative motion between

particles. The presence of gravity torques, however, invalidates the

momentum conservation and produces ever-present relative motion between

particles, and thus ever-present friction. This friction damps the

tumbling motion; systems with internal friction cannot remain tumbling

if only acted upon by gravity torques and forces. If the tumbling rate

is high compared to orbit rate, the kinetic energy is large compared to

changes in the potential energy of gravity, and the tumbling motion is

only slightly affected over an orbit period. This explains the slow

attenuation of the tumbling for high initial rates.
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This problem is of interest to engineers because satellites may have

initial conditions corresponding to tumbling motion when they are re-

leased from the booster rocket or when they are struck by a meteorite.

The problem also has interest as an application of the theory of pertur-

bations, i.e., the method of averaging. (Appendix A and BOGOLIUOV 1,

MINO_SKY 2. )

It has been shown by A. E. Sabroff of Space Technology Laboratories,

in computer simulation studies, that the roll and yaw motions during

tumbling decay rapidly, leaving the satellite tumbling only in the pitch

(orbit) plane. For this reason the motion of principal concern is studied

in this analysis, which treats only the case of pitch tumbling. However,

the method used may be extended to apply to more general motions.

A solution is given for a simple problem of the class just described,

namely, a tumbling satellite in the pitch plane (orbit plane) with an

internal inertia sphere which is viscously coupled to the main body.

The motions are given:and, in particular, the decay of the average tumb-

ling rate is calculated. It is shown that an optimum damping coefficient

exists and that this optimum coefficient increases monotonically with

the initial tumbling rate. It is also shown that the damping time in-

creases sharply with the initial tumbling rate.

A modification of the above system is also studied; in this modifica-

tion a linear spring is added to restrain the sphere in the pitch direc-

tion. The addition of the spring causes a more violent motion of the

sphere as the tumbling rate reaches a certain "resonance" region; this

increased oscillation in turn causes additional dissipation and faster

decay. There exist optimum damping and spring constants for the problem.

Addition of "resonances may result in much-decreased decay times.

By addition to the spring-mass-damping system of a certain small,

constant pitch torque, e.g., by gas jets, we may cause the satellite

angular velocity of tumbling to "synchronize" at a certain angular

velocity which is largely determined by the "resonance" frequency of

the spring and sphere inertia. In this way one may regulate the tumbling

rate without complex sensing equipment. The calculation done in connec-

tt . . ,,

tion with the synchronlzatzon effect serves also to evaluate the final

tumbling rate in the case of gas leakage.
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The results discussed above are obtained by using the asymptotic

methods of approximation due to N. Krylov, N. Bogoliubo_ and Y. A.

Mitropolsky (BOGOLIUBOV 1, MINORSKY 1, MINORSKY 2). The method of

averaging (Appendix B) is used to eliminate the rapid but predictable

oscillatory motions excited by the gravity torque. The end result of

employing the averaging method is a set of non-linear differential equa-

tions for the averaged motion; the integration of these equations can

be accomplished with much less effort than that necessary to integrate

the complete equations of motion. If we use a digital computer the

integrations can be accomplished in many fewer steps than a_direct

integration of the equations of motion.

B. EQUATIONS OF MOTION

Let us consider a rigid body moving in the orbit plane in a circular

orbit about a spherical attracting body. Its attitude is described by

an angle T relative to the radius vector, Fig. 4.1. Within the satel-

lite body is a homogeneous sphere mounted in a viscous fluid. The

angular velocity of the sphere relative to the satellite (and in the

orbit plane) is e. The torque due to the viscosity of the fluid is

-be. The kinetic and potential energies of the system are then (see

Chapter II)

r _- iI n21I3(T + n) 2 + . j

V = kn 2 13 sin2_ "

(4.1)

From (4.1)Lagrange's equations may be used to obtain the differential

equations of motion:

This can also be viewed as an inertia wheel with its axis mounted

along the pitch axis. "Viscous" in the sense intended here means any

force or moment which is linearly dependent on velocity.
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FIG. 4.1. COORDINATES OF TUMBLING VEHICLE
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13"÷+ IC'_+ "_)+ .n213sin2r: 0

I( + ) +bE) = 0

With some normalization and algebraic manipulation the above equations

may be written:

y" = r_e' - k sin 2T

e" = -_e' + k sin 2T

The following notation has been used

= nt = normalized time

n = orbit angular rate (constant)

d 1 d

d-_ ( ) = ( )' - n dt ( )

"F = satellite b_dy pitch angle (angle from radius

vector to 1 principal axis)

0

body (about pitch)

= e' = sphere angular velocity relative to the satellite

= principal axes of the satellite

IlpI2,I3= moments of inertia about the yaw, roll, and
pitch principal axes respectively

= moment of inertia of the sphere about any axis
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31121)k = _ i3

= _ ii 3

I
r =

I + 13

Finally we introduce the new variables k and _ by defining

the normalized tumbling rate.

final (capture) angular velocity, so that _ > 1 is a variable, i/k

will be used as a small parameter in perturbation series.

The differential equations of motion can now be written in first

order form as:

Furthermore, k is defined to equal the

liftksin2 ]CO! =

y' = k_ (4.2)

_' = -_ + k sin 2y

C. CAPTURE

From the equations of motion (4.2), or directly from (4.1), we can

write the Hamiltonianp Hp an energy-like quantity, which is useful in

solving the capture problem and in giving limits of validity to the

perturbation series expansions. This function and its derivative are,

using (4.1) and (3.B), (3.8);
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1
+ (1 - r) k sin2y (4.3)

H b/)= - -- < O;

n 13+ I

(b > O)

The integration of the second of (4.3) leads easily to the inequality

(Chapter III):

H < H (4.4)
-- O

where H is H of (4.3) evaluated at the initial instant.
o

Physically H' is negative and H decreases during the tumbling

motion. When H reaches a value (1 - r)k then the subsequent motion

will be bounded. This means that in less than one tumble capture will

Occur.

If r << 1 then the equation of energy at capture is

2
1_2k2t°2=c (1 - r)k cos y_

where Yc' _ are y, _ evaluated at capture.. This, by analogy with ac

simple pendulum, is the largest closed energy contour surrounding the

equilibrium point y = 0. The capture angular velocity is, therefore,

q Ik_c = k = _+ 2k(1 - r) cosy c

where, as previously discussed, k = (Y')c" If the motion reaches

V2= + k(1-r), then in one revolution it will surely be captured

because of the energy loss. The preceding arguments mean that the value

of k should be taken as k = +V2k(1-r)' for r small.
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D. PERTURBATION SOLUTION FOR THE TUMBLING MOTION

Approximate solutions will be obtained for the angular velocity

y'= k6o large compared to one. Actually the results will be approxi-

mately correct anywhere out of the capture region. We use i/k as a

small parameter in the expansions, assuming that 6o > i. If one uses

the averaging method of Appendix B, he obtains series solutions in

powers of I/_ and can thus approximate the actual motion. To begin,

we must get the equations in "standard form" by a transformation. We

use for this purpose the forced solution with constant 6o. The reason-

ing is that for large _, 6o'_0 and we have just a sinusoidally-forced

set of equations. The transformation becomes,

a = _ + D(_ sin 2y - 2_ cos 27) +

-- k --
6o = co + -- cos 2]C -

Y = _ + k sin 2_ -

4k2_ 2

(%os + sin +

_rD (_sin 2_ - 2_ cos 2_) + y

4k2_ 2

(4.6)

where

k
2

TI + (2k_) 2

Here the barred variables represent the "secular" terms caused by damp-

ing and the sin 2_, cos 2_ terms are the forced response due to

gravity, for large k. The double-barred variables represent additional

perturbations to be defined in (4.9). They will be set equal to zero

for the present.

The above equations are to be viewed as a transformation from _,

6o, y, variables to the barred variables _, 6o, y. The oscillating

terms in 2_ are the result of using the sin 2y terms in (4.2) to

force the equations in a periodic oscillation (as if k6o were a constant).

It must be emphasized that no approximation is implicit in (4.6) but

merely a transformation based on an approximate way of viewing (4.2).
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Now we are going to use (4.6) to get the differential equations (4.2)

in terms of the barred variables, By direct substitution of (4,6) into

(4.2) (with the _p _, _ set equal to zero) the following differential

equations in the barred variables are obtained carrying terms up to fourth

order in 1/k.

k

f1
k 2 sin 4_

4k3_ 2

+ _krD(2k_)(1 + cos 4_) } + 0 (1/k 4)

_, k 2 --
y = k_ cos 4y + 0 (i/k 4) (4.7)

--3
8k3

4k2_ 2
k sin 4_ - k_2r D sin 4_

+ k_rD(2k_)(1 + cos 4_) % + 0 (1/k 4)
)

In the above expressions it has been assumed that _ is of order i/k 3.

This is in keeping with the "steady-state" assumption of the next section.

Equations (4.7) are the equations (4.2) in terms of the barred

variables and these differential equations possess the "standard form"

of Bogoliuboff and Mitropolsky (BOGOLIUBOFF I), That is to say, the

right-hand sides are small and thus the barred variables vary slowly and

the averaged differential equation may then be solved to find the secular

variations in the barred variables. The averaged equations in the barred

variables are:

k 2X2_

_' = k_ + 0 (1/k 4) (4°8)

_, = -_ +

2_
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Based on the transformed variables as defined by (4.8) we may write the

approximate solutions including the e££ects o£ the oscillating terms in

(4.7). These are:

1 i ]= " -- k2cos 4_ " k_rD(_cos 4y + 2k_ sin 4_)
16k3_3 J

(4.9)

_2 _= cos 4T
16_4_ 3

= 0 (1/_ 5)

These expressions (4.9) are of order I/k 3 or smaller. The barred

variables are solutions to the averaged equations (4.8) and together with

(4.6) and (4.9) comprise the approximate solution to (4.2) up to order

(i/_ 2) (BOGOLIUBOV i). The differential equations of average motion

(4.6) are all that remain to be solved. These are solved analytically

in the next section° In a more complicated case these would have to be

integrated on a digital computer. This could be done with many fewer

steps of integration than a pointwise integration of the original equa-

tions of motionp because the velocity and position variables are smoothed

by the averaging process.

An investigation of the errors in these perturbation calculations for

> i, k =_I2k(l-r) shows good convergence if r < 0.i regardless of

the value o£ _ , The dominant oscillatory term in the expression for

is of amplitude 1/4(l-r) which is certainly smaller than _ _ 1

for r < O.1. The next term in the expression for _ is _r/2_2 for

q< 1 or (kl/2r)/_ for _ > > i. These terms are quite small com-

pared to _ > I. The amplitude of _ is 1/64 at capture. These

estimates of the oscillatory terms show good convergence £or the stated

conditions. The conditions r _ O.1 and k l_r) are quite

realistic,
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E. APPROXIMATE SOLUTION OF THE AVERAGED EQUATIONS

In the third equation of (4.8) the second term on the right-hand

side will vary quite slowly compared to the time constant 1/_ ; let

us assume this and verify it later. This allows us to use the steady

state value of _ as the solution. The result is, upon elimination of

in the first of (4.8):

. k 2
:t '1( l'r)r

2_2_(_] 2 + 4X2_ 2 )

9

(4.10)

rk 2 i

I ( l)

.................... [ I

Using the defined relation N = _, we solve (4.10) by direct integra*

Lion to obtain the relationship between the average tumbling rate, N,

and the time, ft.

_ , No s_=O

' I12N2 .I o2N 4 + = - _r(l-r)k"_

C

(4012)

This can be used with (4.11), (4.9) to give the complete approximate solu-

t ioIl o

For some fixed value of the final angular velocity, Nc, we may

solve for the final time w _ :
c

l

= + q (NO
c rlr(l_l.)k 2 c

Under the conditions of (4o13) there exists a minimum time to capture as

a function of the damping paraz_eter, _ . This is given by the following

(_c/_Ti = 0) (see Fig. 4.2):

nopet = e(N2o + N2)e

2(N_ _ N2)

(gc)min =
r(l-r)k 2

_opt

(4.14)
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F. SECULAR SOLUTION WITH SPRING-CONSTRAINED DAMPING SPHERE: THE

EXPLOITATION OF RESONANCE

Consider the problem treated in Section D with the addition of a

linear spring acting between the sphere and the satellite body. This

modifies the equations of motion, giving rise to the possibility of

resonance between the tumbling rate and the relative motion of the

sphere with respect to the satellite body.

The solution given here makes certain assumptions based upon the

previous, more restricted case. The major assumption is that the rela-

tive velocity, _, is in steady state, forced oscillation, and there-

fore the secular solution is equivalent to the solution of the differential

equation of average motion.

The differential equations of motion with an additional torque of

magnitude l(l-r)_ 2 @ applied between the sphere and the body are:
o

1[k qr_2 + r o@ - k sin 2y]
(4.15)

e' =

_, = _q__ 20
o

+ k sin 2y

where

zero torque position of the spring. Assuming that k

a set of transformation equations analogous to (4.6)

_ = _ + 2k_ [- gz sin 2_ + _cos 2_]

@ stands for the angular displacement of the sphere from the

is large we get

c

: _ + i /k COS 2_ + r 2

2L2_ L o

( a sin 2_ - Bcos 2_)

+ 2k_0r q(o_ cos 2y + _sin 2
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@ = _ cos 2If + _sin 2_ + (4.16)

1 [k sin 2_ + rco 2 (" _ cos 2y - _sin 2_)

r = r + 4_2_2 L o

where,

+ 2x_-r q(a sin 2_- _cos 2_)]

0C= -

2_0

o

n

k

'l 2 + o 2kE-

The value of D given above reduces to that previously given (as do

all the formulae of this section) if we let _ _ 0.
: o

Combining (4.15) and (4.16) we get, upon averaging, the secular

differential equations, with _ N.

e=

N|_

rkD1] = rkD_

2_ w 2 2No0 2
o o

(l--r) r_Dk

2N

(4.17)

The solution of the second of (4.17) gives the time to capture, _c'

as
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c 1 [q2(No2 . N 2) + 2(N 4 - N 4)
k2(l_r)rl_ . c o c

+

4

0-9-- I_No/N c) - 2 _2(N2 - N 2)
2 o o c

(4.18)

where it is assumed that N /N > 0. Notice that in (4.18) _ is
o c c

independent of the sign of N . The minimum value of _ occurs when

o 2 c
the derivatives of _ with respect to q and _ vanish. This

c o

occurs for the following optimum values of the damping and spring res-

onance frequencies:

(_)opt

2(N 2 . N 2)
o c

log (N /N )
e o c

_]opt = 2 N + - o 0_Pt
c 2

(4.19)

The minimum value of the capture time is given from (4.18) and (4o19) as

2(N 2 . N 2)

(_) = o c _] (4.20)

c min k2(l,,r)r opt

It is useful to compare the minimum value of _ with the value for
c

arbitrary values of damping and spring constant; this gives the ratio

"]opt ( )opt

___c _ i g + + _o2

(%c)min 2 ;iop t ,q T)_' opt

2

o 1 (4.21)

((_o2)opt

Note that (4.19), (4.20), (4.21) reduce to (4.14) if 2 = 0. Table I
o

gives the computed values of the optimum capture time for a particular

value of terminal velocity and for both resonant and non--resonant cases,
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Various physical observations may be made about these results. By

reference to Table 1 one can see that, for a given vehicle configuration

(K) and for optimum p_X_.metersp the number of orbits to reach N is
c

considerably larger for th_ non-resonant case; while in both cases

the damping time increases sharply from N = N until for N > 5
o c o --

it increases approximately as the cube of N (Fig. 4.2).
o

1, ,!

This behavior may be justified on physical grounds. The resonance

phenomenon causes larger relative motion between the sphere and the

satellite body, thus dissipating more energy per orbit and damping T _

more rapidly (Fig. 4.3). The rapid increase of damping time with in-

creasing N is_ of course, the reason for the perturbation technique;
o

this is a direct result of the "internal" nature of the damping.

If there were no gravity, one could immediately use the angular

momentum principle to show that the particles of the system are frozen

to some rotating reference axes in steady-state; there would be no

relative motion between particles and thus no internal dissipation of

energy° If there is gravity torque then one has relative particle

motion and thus damping. Notice, however_ that this relative motion

is very small for large rotation velocity because the kinetic energy

of rotation is much larger than the fluctuations in potential energy

due to gravity4

Figure 4.4 illustrates how the effect of gravity on the angular

velocity yw increases as we near capture; the effect is to increase

the "ripples" of oscillation about the average angular velocity No

This method of perturbations saves computer integration over all these

rapidly-varying functions; integration of functions varying as the

average velocity 0 N w can be accomplished with many fewer computer

steps.

Go SYNCHRONIZATION OF THE TUMBLING RATE

If a smallp constant torque (for example, via gas-jets or gas

leakage) of magnitude n213c is added, an interesting phenomenon

occurs. The average speedp Np of the main satellite body rises

from zero to a certain value determined by a parameter _ and then
s
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FIG, 4.4. MOTION OF THE TUMBLING RATE FROM N = 4 (SECULAR PLUS

PERIODIC) -- RESONANT CASE o
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the satellite remains turning at_ constant average speed. If the

initial speed is too large, this does not occur; the body simply spins

up indefinitely. The equations of average motion are, with the

additional torque:

F 2N

N' = - K_ _ 4 2N 2 + (to2 . 4N2)2
o

c rkD
= . _ +

2N

+ (l-r)c

(4o22)

where we have defined K = (l-r)rk 2.

There are, of course, equilibrium points at which N _ = 0. These are

the points of synchronization that are sought° They are solutions to

the equations (4.22) with N' = 0. This can be seen graphically by

noticing Fig. 4.5, which shows the solution to N' = 0. From this
J

solution we may deduce that N = to is a stable point and N = to - to
s o s

is unstable. The arrows show the transient motions° N = to - to is
o s

the maximum initial speed for stable behavior.

We may calculate to if c(1-r) is equal to 1/2 K/_ o. Thiss

is

or:

2
to

2 oto + tO + -- = 0
S S 2

to =. /i +_(_/2) 2s 4 + _2/2o (4.23)

oo
o _]tos

_to = _ _ to -
S 2 s to + 2to

o s

where _L0 is defined above°
s

The slope of the curve in Fig° 4.5 at the synchronization point

leads to the "linearized" behavior about this point.

In this analysis it is assumed that the internal damping is the

only damping present, In case other sources are present they may be

easily accounted for.
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FIG. 4.5. LOCATION OF EQUILIBRIUM POINTS WITH CONSTANT THRUST
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_N _ = l-l- 5N + (l-r)Sc

_d

(4.m)

where,

N=_0 +SN
s

c=c +8c
s

4 _Os2"_:_]

'_d =
K(8 Ws/_ - 1)

K = k2(l-r)r

c s= K/2(1-r)_ _o

The time constant for the transient decay to

for small 5N( 5_NN << i) is _d"
us

i/e of its initial value

H. CONCLUSIONS

Several problems related to tumbling satellites have been discussed.

These problems pose some interesting questions which involve the length

of time it takes to damp a satellite with only internal damping between

the moving parts. It is instructive to notice, in the light of (4.8)

the value of the average rate of change of angular momentum. Letting

P denote the total angular momentum we have

= N + r_

P' =-(l-r)r _kD
2N

= r 0 (I/N 3)

(4.25)

where P denotes the average angular momentum (divided by I + I3).

The important observation about (4.25) is that the average torque (or

rate of change of total angular momentum) is small of order 1/N 3. This

fact indicates that the average torque about the pitch axis due to the

damping torques between particles of the system is of order 1/k 3.
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Because for tumbling rates significantly above the orbit rate the

angular momentum decreases as the cube of the reciprocal angular rate,

the decrease in tumbling rate is extremely slow. One must notice that

this would not necessarily hold if external damping torques, for

example gas jets or earth magnetic field damping, were significant.

The slow nature of the secular decay of tumbling rate makes direct

digital solution of the equations of motion very costly in time and

in round-off errors. The perturbation scheme outlined makes the job

of integration much less difficult and in certain cases obviates the

need for numerical integration entirely.
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CHAPTER V: _u1_uo ON ,"I_ELiBRATIONS OF A S_'_m_ETRiCAL SATELLITE_

A. INTRODUCTION

The problem of rigid body motions in a gravity field dates at least

to Newton who explained the first, order precession of the earth on the

basis of his new gravitational theory. The precession and nutation of

the earth later became important to astronomers in connection with the

length of the sidereal day. Hipparchus first observed the effect of

these rigid librations of the earth before the birth of Christ.

It was, however, D'Alembert who first gave a complete formulation

of the problem for the case of high spin (precession and nutation).

Laplace, PoissOn, and Tisserand all subsequently worked on the problem

and it comes to us largely in the form in which they left it.

These investigators had in mind the verification of Newtonian

gravity theory by pure deduction based on Newton's second law and the

known orbits of the Sun, Moonp and plane_s; our interest is in the use

of this theory to predict the dynamic behavior of artificial satellites.

We are, therefore, interested in the complete range of motions rather

Cha:_ just the high spin case (of interest in the case of the earth)°

Since the first artificial earth satellites were contemplated,

there has been an increasing interest in the attitude dynamics of rigid

bodies in orbit. Work on the stability of a symmetrical rigid body in

a circular orbit has been done by Thomson (THOMSON _), Beletskii

(BELETSKII 1)w and Auelmann (Ab_i_ANN 1)o Thomson considered the sta-

bility of the small-amplitude motion of the symmetry axis of a zatellite

relative to the normal to the orbit plane. Beletskii treated the high m

spin case of a satellite with gravity and aerodynamic perturbations°

Auelmann attacked the problem of the present chapter, but established

results only for the zero spin case.

This chapter is to be published in A]AA Journal, .M_y 1964.
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In this chapter the author will endeavor to show a complete picture

of the equilibrium solutionswtheir stability and regions of stability

for a symmetric, rigid body in a circular orbit. This type of analysis

is of course preliminary tea complete study of system behavior incluG-

ing librations and periodic solutions.

/

The analysis draws on the theory of bifurcations of Poincare
/

(POINCARE i) and on Hill's use of the Jacobian integral in the lunar

theory (HILL i)o The problem is interesting because it has (I) a

physical motivation and use, (2) a simplicity inherent in two-degree TM

of-freedom cases, and (3) a wealth of interesting phenomena.

B o EQUATIONS OF MOTION

Consider the angular motion of a symmetrical, rigid body relative

to a rotating coordinate system (_0_,9 unit vectors) which is centered

A

at the body mass center. The 1 axis points along the radius vector

from the earth, the 3 axis points normal to the orbit plane_ and the

2 axis points along the orbit velocity vector and is such that _ = _ x 1

(Fig. 5oi).

Two sets of Euler angles (generalized coordinates) will be used to

/% A A

define orientations of the satellite relative to the i_2_3 reference

frame 9 because each set of Euler angles is singular at a parti@ular
A

point of interest° In each case 3b is the axis of symmetry of the

A

satellite° For the first set c_gnsider (Fig. 5o2) an axis system Ib,
A A A A A

2b, 3b initially aligned with 1,2p3o Then a counterclockwise rotation_
A

02, about the 2 axis and a successive counterclockwise rotation_ 0
A A ^ ^ ^ ^ ^i

about the -ib axis locates the ibp 2b_ 3b frame relative to 1,2_30
A A A

The lb, 2b, 3b set does not spin with the satellite°

The second set of Euler angles are the spherical angular coordinates
A

of 3b in Fig. Sol° The angle _ is a rotation locating the position

of the spin axis (_b) relative to the plane of the orbit and 0 is

an angle locating the plane of Q_-rotation relative to the 1,2 plane°

In both of the coordinate sets used above the angular rate about the
A

o

3b axis relative to the rotated coordinate axes is defined as _;

is a generalized coordinate not appearing in the energy expressionS.
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The body is specified by a moment of inertia C about the _b

axis (.symmetry axis) and a moment of inertia A about any axis normal
A

to 3b and passing through the center of mass.

We may now write the kinetic and potential energy due to rotation

of the rigid body about its mass center (see (2.7) and (2.8)).

T = _ + (e + n)2cos _0 + _ + (@ + n)sin

A {(81 + nsin 82)2 + (82cos 81 -ncos 82 sin 81 )2 }
.

+ 12-42 + n cos O 2 cos e I + sin 81 (5.1)

V _
3 2 2 '

n2(C - A) cos _0 cos 8

= _2 n2(C - A) cos 2 _1 sin2 _2

It is convenient to define

where p_ = d/dt (_T/_) = O.

axis, is a constant equal to

r = C/A

= p_/C

(5.2)

p_, the angular momentum about the _b

= C [_ + n cos 82 cos 81 + 82 sin 81] (5.3)

We may now use Lagrange's equations to find the motion of the satel-

lite under the potential energy, V. These may be written as

dt \ _qi _qi - _qi

(i = 1,2,3) (5.4)
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where the qi are generalized coordinates taken to be either _, 8,

or 81' 92' _° There exists a first integral for the above problem

(LANCZOS 1); this is the Hamilto.ian, H (which is not the total energy

in this problem).

_T • _T • bT °
H - _/ + -- % + -- e - T + V (5 °5)

Using (5.4) we can easily verify that dH/dt = 0 and, therefore, that

H is a constant of the motion. In terms of the variables of this prob_

lem H becomes,

H = R2 + U (5.6)

where,

2
A (_2 + _2 cos _)R 2 =

or (5.7a)

or

.2
A A (_i 2 + cos281 )R2= _ e2

U _ 3 2
:= _ n2A(r - 1) cos _ cos28

- -_-- cos Cp - A_rn sin _0

U _ 2n3 2A(r - i)cos281 sin2e2 - A_rn coselcose 2

- An--_(cos282 sin2e I + sin2e 2) (5 o7b)

where the R2 functions are positive definite functions of the velocities

and the U are functions of the coordinates _,8 and 81, e2 . Notice

that _ has been eliminated in favor of the constant _ by u_e of (5°3).

The function U is called the "dynamic potential" and plays an impor_

tant role in the stability analysis that follows.
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C. EQUILIBRIUM POINTS

An equilibrium point is a point in the _, e or el, e 2 space

where the 3b axis can come to rest relative to reference frame 1,

2, 3. This condition is defined using (5.4) by

bu
- u = 0 (5.8a)

bu

be - Ue -- 0 (5.8b)

Using (5.7), (5.8) gives the equilibrium relations

[3(1 - r)sin_0 ° c°S2eo + sin_0o _ _rn ]c°S_0o = 0 (5.9a)

2

cOSeo sineo cos _00 = 0 (5.9b)

The above conditions reflect the static balance between gyroscopic and

gravity torques. We must investigate the equilibrium points _o' eo

defined by (5.9), We see that two cases obtain:

I. _o = --+ _/2, 0o arbitrary and

11. _o _ ± _/2

Case II contains two subcases, i.e.,

IIa. 0 = 0, _; sin_o = _r/n(4 - 3r) and
O

IIb. e = + _/2; sin_o = _r/n.0

We note that this, due to (5.9b), exhausts the possibilities.

D. STABILITY OF EQUILIBRIUM

We must now discuss the stability of each point and whether U

a maximum, minimum, or saddlepoint. Define the (hessian) matrices

has
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U8181 UOle 2

U8281 U8282

m

u o u_

U8 _ U88

where the symbols Uqiq j = b2U/bq _qm 3 are evaluated at the various

equilibrium points. We shall use _l for the points of Case I and

_2 for points of Case II. Since _ can be thought of as the matrix

of a quadratic form, U, in _0,8 or 81,82, when _0, 8, 81, 82 are

small displacements from equilibrium, then: (1) if _ is positive

definite at _Oo, 80, or 810, e20 there exists a minimum of U, (2)

if _ is negative definite at the point of equilibrium there exists a

maximum of U, and (3) if _ is sign variable at equilibrium, there

exists a saddlepoint of U at the equilibrium point. If I_I = 0,

there is a bifurcation at the equilibrium. Note that if suffices to

determine the results for 2 _ 0 only. This is so because in (5.7) U

is unchanged if _--.-_ and _o --_ -_o"

It can be shown (POINCAR_ i) that a "point of bifurcation" occurs

when the determinant of the hessian of U,i _i, vanishes. At a point

of bifurcation the qualitative nature of the stability behavior changes.

This can be seen by using the fundamental result that I _I = klk 2,

where kl and k 2 are eigenvalues of the quadratic terms in the

expansion of U about an equilibrium point. Observe that if k I > 0,

k2 > 0 we have a minimum of U, if k I > 0, k2 < 0 or if kl < 0,

k2 > 0 we have a saddlepoint of U, and if kl < 0, k2 < 0 we have

a maximum of U; this means that as I_I = ilk 2 passes through zero,

the topology of U changes.
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Consider now the stability of the equilibrium points of Cases I

and II by using the hessian matrix 0 _, to test U. It can easily

_/_2 80'be seen that the elements of are at ._o:

U0_O = + 3n2A(1 - r)cos 2_ coS2eo + An2 cos 2_ + _rAn sin

U_ - 32 n2A(r - 1) sin 2_0° sin 26)o

= 3 2
U88 _ n2A(r - i) cos _0° cos 26) o

and at _o = _/2p the elements of _1 become

U8181 = An 2 ( ___[rn" 1)

U8182 0

U8282 An2( _r= -- - 4 + 3r)
n

For Case I it can be seen that if _/n > l/r, _/n > (4/r) - 3 the

function U is minimum. If only one of these is violatedp U has a

saddlepoint, and if _/n < i/rp _/n < (4/r) - 3 then U has a maximum

at _o = + _/2(810 = O, 820 = 0).

For Case IIa (8 = 0,_ ; sin _o = _r/n(4 - 3r) we see that ifo

r < 1 we have a stable (minimum) point. If 1 < r < 4/3p we have a

saddlepoint of U, and if r > 4/3 we have a maximum of U, There

is a bifurcation at r = i.

For Case IIb (8 = + _/2, sin go = _r/n), r = 1 is a bifurcation
o

point. If 1 < r < 2 there iS a minimum of Up while if 0 < r < 1

we have a saddlepoint of U.
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These curves are plotted for the two cases in Figs. 5.3, 5.4, and

5.5. The solid curves in Fig. 5.6 are "curves of bifurcation." This

means they divide areas (of the plot of g/n versus r) with qualita-

tively different stability behavior. In Figs. 5.4 and 5.5 the solid

lines are the curves beneath which the equilibrium point can exist.

These are derived by noticing that sin _o _ 1 for existence of either

equilibrium (IIa or IIb). Figure 5.6 is a composite plot showing all

the curves of bifurcation on one plot. For the purpose of sketching

the behavior in configuration space it is useful to know how many

different kinds of qualitative behavior exist_ The curves of bifurca-

tion divide the g/n, r plane in sectors (labeled a - g). If one

moves across a curve of bifurcation then he must use a new letter, thus

there are seven kinds of behavior in the quadrant g > 0 (0 < _o < _/2)

and likewise seven for _ < 0 (- _/2 < _o _ 0).

E. CURVES OF CONSTANT U

It is now possible to plot contours of constant U in a space of

_, 8 for Cases I and II. For the purpose of drawing them it is useful
A A

to project the points of unit vector 3b on the plane of i, 2. This

is accomplished by the mapping

x = cos _ cos @

y = cos _ sin 8

A A

where x is in the 1 direction (radial) and y is in the 2 direc _

tion (tangential).

It is useful to have a relation between 9, 8 for the slope d_/d8 = O;

this is of course the case of a contour parallel to the equator for

which:

bU

de = - T = 0
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if U _ 0. From (5.8b) and (5.9b) U 0 = 0 when 0 = 0, _a/2,_

and when _ = + _/2. The point _ = + n/2 is never a point of zero

slope b_cause _ = _ _/2 are always equilibrium points. We then have

d_/de = 0 when e = O, _/2_ _ but e = 0, _/2, n are not

equilibrium points. This is useful in plotting curves of U = constant.

The curves of constant U are shown in Figs. 5.7, 5.8, 5.9, .

and 5olQ for the cases _ = Q of Fig. 5.6. The points (+) are

(stable) minima and the points (_) are maxima of U.

If initially the tip of the symmetry axis (_b) is within a closed

contourp U = H , then because R 2 _ 0p we have U < H for allo P -- o

subsequent motion. If a closed contour surrounds a minimum point, then

a motion exceeding U = Ho(U > H o) would require R 2 < 0 which is

impossible. This proves that if in Fig. 5o7 0 Case (a), we have an

initial position Pw and if the initial velocities give an H = Ii ,
o

then the symmetry axis (_b) will always remain within the curve

C(U = Ho).

The motions of the _b axis within a contour C begin at a point

P and never leave the interior of C. These motions will, however,

reach C and at such times the relative angular velocity will vanish.

At these instants the trajectories in the configuration space will

either be tangent to C or form cusps along Ct

The maximum regions of bounded motions about a minimum of U are

surrounded by " " _'separatrlx curves whi.ch always pass through saddle-

points. If _s t @ is the position of a saddlepoint then separatrixs

curves are defined by:

2 2

3(r-l) coS2_s cos28 + cos _ - cos _s + sin _(sin_ - sin_)
cos28 = s

2
3(r-l) cos _0

where sing_ = _r/n, sin_ = _r/n(4 - 3r). For the cases where

separatrices exist we have

Case a: 8 = + _/2; Q) = a
s s
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VIEW ALONG NORMAL TO ORBIT PLANE

-3

VIEW IN ALONG RADIUS (1) VECTOR

Case (c) : High Spin

FIG. 5.8. CURVES OF CONSTANT U: CASE (c)
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Case b: _s = _/2

Case c: No Separatrix

Case d: e s = O, x ; $: =

Case e: _s = _/2

Case f: _s = - _/2

Case g: _s = _/2

The curves surrounding a maximum point of U tell us nothing about

stability, but we can show, using small oscillation theory, that such

a point may be stabilized if 2/n is large enough. Thomson and Kane

(THOMSON 2 and KANE l) have shown that there are points of region

of Fig. 5.6 that are stable. The condition that must hold for this to

occur in region @ is, for small oscillations,

_r

i-n
An example is _/n = 3,

lies in the '_aximum of

2

- 2 + (3r - 1) > o

r = O.1 which is stable in the small and also

U" region of 9, e. For large motions in

region @ the non-linear librations about go = _/2 must be investi-

gated. This has not been done.

It is well known, as reflected in (5.i0_, that gyroscopic forces

can stabilize a system of two degrees of freedom with such a potential

maximum as occurs in region G The curves surrounding a maximum

point of U only provide bounds on the nearness of approach to equilib=

rium; this is not too helpful. One might be apprehensive about the

maintenance of stability around a maximum of U in the presence of

damping; this apprehension is justified by recourse to Lyapunov's

stability theory.
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It can be shown that if damping (energy dissipation) occurs due to

forces which do not effect the mass distribution of the satellite

(e.g., control jets or magnetic losses due to the earth's field) or to

forces of internal damping involving elements with low mass and inertia,

then the stability of the symmetry axis will occur if and only if at

the equilibrium point U has a relative minimum (see Chapter III).

This indicates that for engineering purposes stability only occurs in

those situations where U has a relative minimum. It must, however,

be stressed that each satellite system should be analyzed completely

on its own. Results from the above analysis should only be applied to

the system defined in Section B. The general approach of this chapter

is applicable to a wide class of systems with and without damping; the

extensions to these cases are given in Chapter III.

F. SUMMARY

The results of this chapter are presented in Figs. 5.6-5.10.

Figure 5.6 is the parameter plane of spin velocity versus the moment

of inertia ratio. The curves represent "curves of bifurcation"; if one

of these curves is crossed, the qualitative nature of the stability of

equilibrium points changes.

The seven regions separated by the curves of bifurcation are shown

in Figs. 5.7-5.10. Cases (a) and (b) are for long, slim bodies, and

in these cases the symmetry axis tends to point along the radius vector

from the earth. It is displaced out of the orbit plane due to spin

(gravity torque and gyroscopic torque is balanced) and its equilibrium

(+) points therefore appear as in Fig. 5.7.

Case (c) is for a short, flat body; this case has an equilibrium

solution with 3b normal to the orbit plane, as in Fig. 5.8.

Cases (d) and (e) are very low-spin, short, flat bodies and they

tend to point with their symmetry axes tangent to the orbit.

Cases (f) and (g) possess the property of having equilibriums in

the lower hemisphere of the unit sphere at _o _ - _/2; otherwise

Case (f) is similar to Case (c) and Case (g) is similar to Case (e).
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The technique used to find the stability regions can also be used

for more complicated systems but the geometry is more difficult in

several dimension spaces. To get the maximum-U boundary curve surround-

ing a particular minimum point, however, is fairly simple. If all the

equilibriums are located (it is not always simple to solve the trans-

cendental equations), then the value of U for these equilibriums can

be found. Starting at a minimum point we simply seek the lowest-U

saddle curve with energy greater than that of the minimum point in

question; this is the lowest energy separatrix curve for the equilibrium

point in question.
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CHAPTER VI. A METHOD FOR CALCULATING THE NATURAL MOTIONS OF AN

OSCILLATORY SYSTEM WITH LIGHT NON-LINEAR DAMPING

A. INTRODUCTION

In the application of dynamics to many engineering systems with

mechanical elements the effect of energy losses, called damping, is

of critical importance. There are a variety of physical processes

which may provide this damping; often the damping law is a non-linear

function of the coordinates of the system. Frequently, especially in

space mechanics and vibration applications, the forces providing the

damping are weak compared to the other forces of the motion. This

means that over one period of oscillation the system response is not

greatly effected by the damping forces. In a linear system this would

be called lightly-damped behavior.

This chapter presents a method, similar to the Krylov-Bogoliubov

method (KRYLOV 1 and BOGOLIUBOV 1), for attacking the problem of lightly-

damped oscillation in non-linear systems with several degrees of free-

dom. This method handles a large number of damping laws and requires

only that the average power loss from damping be specified. Thus we

need not know the damping forces explicitly to get a solution accurate

to first order. The approach taken is simple in that very little

algebra is necessary to get the expressions for damped behavior. The

method, in effect, extends the classical method of Lindstedt-Poincar_

(MINORSKY 1 and 2) to the case of lightly-damped behavior. These

characteristics make this a natural technique for handling damping by

force hysteresis, e.g., elastic or magnetic hysteresis.

B. METHOD

The discussion which follows will center around the basic equations

of a mechanical system as conveniently derived using the Lagrange equa-

tions. The system is described in terms of generalized coordinates,

qj(j = 1,2,...,N), and generalized damping forces, Qj, as follows
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(summing on repeated indices)

eu •

a.13.q._ + bijqj + cijqj = Q'I (6.1)

where aij = aji , b..._j= -bji, cij = c31... The b..13 are the so-called
t! . tt

gyroscoplc terms° The gyroscopic terms as defined do not include a

b.. termQ o
iI

These equations of motion are given with constant coefficients for

simplicity of exposition° However_ each step in the subsequent analysis

can be made for the general case by using the Lagrange equations and their

energy relation directly° This is not included, but is an easy exercise.

after identifying H as the Hamiltonian function°

The energy relation is found by multiplying (6ol) by qi, summing

on i and j, and integrating with respect to time (aij , cij are
o

independent of time and qi' qj)' This gives$

t

I ' ° I /'
H = _ aijqiqj + _ cijqi qj = H ° + _Qiqidt (6.2)

o

where

H= o

Q.)o
1

H
o

and
o

By differentiation of (6.2) we get the important relation

N

= Power into system
P = H = i _ by external forces

i=l

is the value of H at t = 0. If Q. = 0 for all i then
i

H = H , a constant (this is the case without damping forces

(6 ,,3)

There is implicit in (6oi), (6°2) 9 and (6.3) the fact that the equations

of motion are linear with constant coefficients (see Chapter III for a

generalization of the above results).
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i. Analysis for Qi = 0

If the elements eij _ bij , cij are not dependent on qi' qi

then the system is linear and we can write down the linear solution to
m

the case Qi = 0 in the well-known manner. Define qj a complex

__ZkRe -- (Re stands for "the real part of") and
number by qj qj o

kt

_j = A oej . Substitution of qj into (6,1) for qj gives for

Q. = 0 (all j) :
J

(k2a.. + Xb.. + c..)A. = 0 (6.4)
zJ iJ zj j

which can be written_

M .(X)A. = 0
iJ j

where the matrix M.. is defined to be
zj

M..(k) A X2a.= . + _b.. + c.. .
lJ iJ IJ iJ

Note that by using the properties of a..,ij bij' ci3.

]Mji(X) I : ]Mij(k) I = IMij(-_) I

we can write

where IMij I stands for the determinant of Mij. This proves that the

characteristic determinant is an even function of k and thus the

_ is either purely real or purely imaginary.roots are + kj, where kj

We are interested in the "stable, oscillatory" case where the _. are
J

all purely imaginary and e therefore, kj = _ i_j, _j real and positive.

The reality of _.(j = 1,2,...,N) is a necessary but not sufficient
J

condition for asymptotic stability (see Theorem V of Chapter III)o We

assume in what follows that the motions are asymptotically stable°

The solution may be written as
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i (_kt+}'k)

qj = Ajk2_ke

_ k_ i (_k t÷_/k)
qj = i_kA, j k e

(j = 1,2,...,N)

(6.5)

A

where-/hk is the (real) amplitude and _k is the (real) phase, and

N2
the Ajk relate to the mode shape° There are of the Ajk , but

we know they are related by the fact that there are only 2N arbitrary
A

constants in the solution (these are the Jk, _k ). Therefore, there

are only N independent A each having a real and imaginary part.
jk

These are chosen arbitrarily. The relations between the Ajk are

found from equations (6.4) and

MijAjk = (-_aij + i_Kb..zj ÷ cij)Ajk = 0 (6.6)

where

IMij(i_k) I = 0

for a solution of (6°4) and (6.6) to exist.

The procedure is to (a) find the _k' (b) solve (6.6) for Ajk in

terms of one Ajk , say Alk , which is arbitrary, and (c) take the

real part of qj to find the motions. If the equations (6ol) are non=

linear then steps (a) and (b) above are replaced by any appropz°iate

approximations (MINORSKY 1 and 2).

/

2. Modification of the Solution for Qi Small (Light Damping)

The next step, which is crucial, is to admit small damping

forces, Qi' such that the oscillation envelope decays in a time

which is long compared to one period of oscillation. The motion of

each "normal mode" is a fast oscillation within a slowly varying

envelope. For approximation of the "envelope _ we shall allow the

" _ to vary with time in order to admit small"arbitrary constants, k'

The_
Qi" k(t) will be determined by use of the energy relation (6.3)

on an average basis.
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3. Approximation for the Decay of JL k

The crux of the present method is to separate the smoothed

(averaged) envelope motion from the vibratory motion. To do this we

employ an averaging argument which has asymptotic validity as Q. _ 0i

(see Appendix B or BOGOLIUBOV Ip KR_IY0FF i_ MINORSKY 1 and 2 for

similar reasoning).

Define the average of a function of time as

f(qi "pqi ) • = lim

_d_kP_k T-_o

T

i/f(qi Pqi )dr

0

where _k' _k are held constant (denoted by the subscript).

average energy is, using (6.2) p (6,5)_ (6.7)

(6.7)

The

a ÷c13 k 13 k 2
(6,8)

where A* is the complex conjugate of A 9 and Hk is a constant de-

fined by (6.8). This result is easily modified for non-constant ai_ sJ

bij p cii'v Now the average of the function = Qi-i = is

calculated to be

. •
-- 0 --

H = P(qwq) -_ H (609)

where H = H if the function H is well behaved (which it is_ as is

clearly seen from (6.8)_o The differentiation H refers to the fact

that the -:'_k vary with time to make (6,9) hold.
O

Now postulate that the power expressions is a polynomial in qi0qi o

N

__Qjq " " " _ijk " °qiqjqk= PCqpq) = _ _ijqiqjJ

jml

" ijk&i j k"'"'_"

(6.10)

+ FOURTH AND HIGHER DEGREE
°

FOP,NS IN qi p qi
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To average such an expression we substitute qj, qj into (6.10) and,

holdingS, _k constant perform the averaging operation of (6.7).

It is easy to see that this operation reduces all the terms with an odd

number of indices to zero and gives a form in_tk(dropping terms higher

than third degree).

2% (6.11)

The coefficients in (6.11) stand for functions of frequency and can be

derived from an expression such as (6.10) or from experimental consider-

ations directly.

Now we use (6.8), (6.9), and (6.11) to calculate the power balance

requirement. This is one condition to determine the N_'s. This

A

leads to (defining a useful function W)

N

k j:l

+

N N

j:l _:1

"2/L2A" = o
'_jk_-A"j _ k}

(6.12)

A
W_

n_ed N-I conditions on_ k to fully

These are provided by letting _k = _k determine the envelope motion.t] :
J

A

that is, each J_k motion depends only on N arbitrary initial motions

and time. Note that, _(o) :_ [_j(o), o ] , by definition (see

(3.2)).

This requirement is a direct consequence of our desire to describe

envelope motion by N differential equations of first order. Note that

the expression (6.12) for W is to vanish identically for all motions

-_-k' What if all the terms in curly brackets in (6.12) are zero ex-

cept one term which is not? If we express W as
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W _---

N

k=l

(6.13)

where (not summing on k)

gk (_'t)'= _ A k + F k Ak

+

N

.A. 2 +
_ Gjk j_

j=l j,_

The assumption is

gk = 0 for

gk _ 0 for

k_n

k = n

(6.14)

But from (6.13) ( W _ 0)

-_n(t) gn(J_,t) = 0 (no sum)

which requires _ (t) = 0 all t. This contradicts our assumption
n

A

that the J_.(o) are arbitrary. Clearly the assumption of wh_h
J

number n takes is arbitrary; so the following hold for all t and k:

g_: _ J[k+ Fk--&k+

N

j=l

+

N

7 o
j=l

_=i

(6.15)
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This is the fundamental equation of the method. From this equation

we can deduce the motion,_, of the envelope of oscillations for

sufficiently small power loss functions. There are N first order

non-linear differential equations with N initial conditions• The

solution to these equations is not possible in general because of the

non-linear coupling; but for N = 2 it is possible to discuss the

equations using phase plane methods.

The equations (6.15) represent an extension of Rayleigh's observa-

tion that for viscous-type damping (P = _ij qi qj) for forces and

thus the motions can be derived from a single function, the power

T, . ° .
(STRUTT 1). He named this the dlsslpatlon function," an apt expression

because Rayleigh excluded from P the part of Qi derivable from a

potential; the remaining part, of course, defines the damping. Our

function P is sufficient to derive a first approximation in the cases

where (6.11) holds; thus the assertion that P represents an extended

Rayleigh dissipation function.

Summary of the Method: Given an expression for P, either from

an expression like (6.10) or empirically, one uses the expressions

for the energy (6.2) in the following manner.

(a) Obtain the solution to the linear differential equations

(6.1) with the damping forces Qi = 0. This involves finding the

matrix Ajk by solving the set of equations (6.4) and also find-

ing the natural frequencies _k from the determinant of (6.6).

(b) Calculate the average energy (Hamiltonian) using (6.5)

and (6.2). This gives equation (6.8) and thus the coefficients

(c) Use the coefficients of P (given) and the _ to com _

plete specification of (6.15).

(d) Solve (6.15) by approximate or analytical means or by

using a digital computer. A computer will be saved many integration

points, and therefore computations, by using (6.15) in lieu of

(6.1). Of course, if P is only known experimentally, then (6.15)

represents the only solution because the Q. are not known ahead
1

of time (before integration of (6.15)).
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In the cases where the coefficients of equations (6.1) are not con-
o

stant but vary with qi' qi' we must make a further observation. If

we set Qi = 0 and employ the Lindstedt-Poincare procedure (MINOESKY 1
o

and 2) to develop an asymptotic series for qi' qi' then we can use

these approximations in place of (6.5) as "generating" solutions. The

equations (6.15) will be modified only to the extent that their coef-

ficients become functions of _. It turns out that only perturbation

in the phase _k in the Lindstedt-Poincare procedure will effect the

damping motion to first order. This addition involving non-linear

equations (6.1) is easy to apply upon mastering the arguments leading

up to (6.15) but cumbersome to write down in the general case.

To demonstrate the above procedure two examples will be given.

C. TWO EXAMPLES

As examples, a one-degree-of-freedom harmonic oscillator and a

two-degree-of-freedom gyroscopic system are chosen. Each of these

systems is linear except for the damping law, which is non-linear.

i. Single Degree-Of-Freedom Harmonic Oscillator

This example treats the case of a system described by the

differential equation

•" 2
q + _o q = Q(q, _1) (6,16)

for the case where the average power loss law is given by

b a (a > i, 0)= = qmax -- qm>ax (6.17)

where b and G are some constants, possibly determined empirically.

This power loss could also be derived from a force law, e.g.,

Q = - C lqIG-isgn q (where C is simply related to b).*

sgn 4 =
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The linear solution for Q = 0 is given by (see Step (a))

q = qmax coS(Wot + _) (6.18)

= -w sin(w t + _)
o qmax o

These can be verified by substitution into (6.16) holding qmax,_

constant. If qmax,_ are allowed to vary slowly (which they will if

b is sufficiently small) then the average energy and power are (see

Steps b and c), since E = H,

2

o 2

_- qmax

(6.19)

= 2 qmax _ = P b (Zo max = - qmax

These equations (6.19) are derived by analogy with (6.12). The motion

of qmax(t) by analogy with_ of (6.15) is easily seen to be (Step d)

• b (r-1

qm + _-- qmax = 0
_0

o

(6.20)

The solution of (6.20) is, by direct integration,

1

2-a (o) - (2-a) T t
qm (t) = qm w

o

[b]qm(t) = qm(0) exp - T t
w

o

(a _ 2)

(a = 2)

(6.21)

The case _ = 2 corresponds to the ordinary linear damping case; the

case _ = 1 corresponds to an ideal type of coulomb friction (Q = - Csgnq);

the other cases may possibly follow some empirical laws for damping.
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2. Two-Degree-of-Freedom w Gyroscopically_Coupled Systems

The system to be treated may be based on a model of a two-

degree-of-freedom gyroscope with restraining gimbal springs, on the

roll-yaw equations of a satellite librating in the gravity field of

the earth (DEBRA 1 and 2), or on many other such systems involving

cyclic coordinates. The equations of motion are given as

2
ql + Wl ql + hq2 = Q1

•. 2

q2 + _2 q2 " hql = Q2

(6.22)

The roots of the characteristic equation are found from the factors

of the polynomial

2 2 h2k2A(k) = (k2 + _l)(k2 + _2 ) + (6.23)

We denote these roots by _i P _2

letting AIj = i. This gives

and calculate A.. as in (6.6)
xJ

i h_ -i h_ I

2 2 _2 2
_i - _i 2 " _2

(6.24)

The response can be written down as in (6.5)

i (_it+_/l) i (_2t+_/2)

qi :Ae +_e
I 2

"- _i_A_ i(_It+*l)ql = i i e

i (_2_2) _

+ a2_2e (
_J

(6.25)
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q2 = ih

ni_lei(_it+_i ) _i/_2ei(S2t+_2 )

2 _ _I 2 2_i _2 - (°2

o

q2 = -h

_12/_iei(_it+*l) _i_2_2ei (_2t+'2)

2 2 2 w22_i - _i _2 -

The energy is found from (6°22) to be (as in (6.2)), since E = H,

i -2 .2 I 12 2 2 2E = 2 (ql + q2 ) + 2 (_ ql + (°2 q2 ) (6.26)

The average energy is computed, using (6.25) and (6.26)

i 2 2 2 2 i 2 +.A__)E= _ (_;_+ _2#_2) + _ _icA_

+

¥

_- (n + _)

(6.27)

This energy expression is actually exact

(6.25)is exactand _=0 if ]il,fl_2

in all linear cases of (6.8).

The coefficients in (6.8) are

2 2 1
2El = _i2 + 2_i + _2

(E = E) since the solution

are constant. This is true

(6.28)

-83-



As an interesting example of the method, the dissipation forces

are assumed to be of the non-linear form_

= 2% "Dlql" 02% ql (6.29)

Q2= 0

Thus the power is, applying (6.2)

P : Qlql -D _2 . D 2 .2= 1 1 2ql ql
(6.30)

and the average of the second term of (6.30) is

T

D2 c°sgl + c°sO2fllim --_ _i sin_l + _2 sin_ 2 ,k dt

0
(6.31)

A A
where the

integ'ration of (6.31) is carried out holding __Jh'-/k-2' 41'

42 constant and where _i = _I t + _i' _2 = _2 t + 42" The average of

(6.31) is, of course, equivalent to the first term in the Fourier series

P o Thus we have

D

_ 2 2 _2J 2.= _ i (_i_--:i +2 2 "2 ) " 7

(6.32)

By applying (6.15) we get two differential equations for the envelopes

-_1 and -/_,2 o

D1 _'_ +_,i-/_+ --_

+ D1
D2 < I 2_2 +'hi

(6.33)
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Let SI, $2, RI, R2, be defined as

D1 221

S1 = 2E 1

2

D 1 2 2

S2 = 2E 2
(6.34)

D 2

_R 1 = 4E---1

D 2

The _ parameter is assumed small so as to approximate the equations

1 2^2
_ + SI_ + _R I _t I +_2 = 0

I_2_2

(6.35)

by the expression

A A1= +_ +.1 1 1 ....

= 2 +_ + .....

(6.36)

Using (6.36) in (6.35) we get by identifying coefficients of powers
2

up to order _ ,

of
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/_o=0
+ SI i

(6.37)

It is assumed that initially ( t = 0)

.A.(o)=A_(o) ; ._(o) =o
(6.3s)

.fk2(o) = ./L2(o) ; .A._(o) = 0

Solving recursively (6.37) subject to (6.38) we obtain in a straight-

forward manner a first-order approximation in _.

_l(t) = e [ _(o) - wR 1 2S1 - (1 - e )
k

_2 - (1 - e

+ - 2S 2_ S1
(6.39)

A,t-) L
-S2t

(]. - e )

+
_i -- (i - e

_2SI- S 2
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We observe that if _R I > 0 the perturbation decreases the envelope

response time and if wR I < 0 the envelope response is slowed down.

This is as we might expect from power considerations since _R 1 > 0

means more power loss at a given A ,f_ and vice versa. This can

_orbe seen analytically by calculating .A_(o) = 0, the "time constant,"

_, defined as the time for the value of °._l(t)/Al(O) to reach 1/e.

To first order in _ this is easily found to be

u

S1 S1 1

This shows that to first order in _0 _ decreases linearly with in-

creasing Al(O) for _ > 0o

D. CONCLUDING REMARKS

In this chapter the author has attempted to show how, by applying

a power balance relation, one can arrive at the "envelope motions" of

a lightly-damped oscillatory system. The method depends on knowledge

of the undamped differential equations plus the expression for average

power loss. The expression for average power loss is sufficient for a

first_rder approximation in a large number of cases involving non-

linear damping°

The above method may be especially important in the analysis of

vibrations involving empirically known damping laws. The results are

derived more directly and give more physical insight than similar equa-

tions derived for one=degree-of-freedom systems by Krylov and Bogoliubov

(KRYLOV 1 and BOGOLIUBOV 1). These results will be used extensively

in Chapter VII to approximate the damped librations of various satellites.
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CHAPTER VII. THE ANALYSIS OF CONNECTED SATELLITES

A. INTRODUCTION

U._til about 1960 nearly all work* on gravity gradient stabilization

schemes was confiL_ed to consideration of a single rigid body with per =

haps _yroscopes (C$uNNON 1) or a _'damping sphere" (DEBKA 1) i_side for

damping. In the la_ three years several vehicles have been proposed

using connected, external moving parts for damping and to magnify the

gravity effect. These vehicles seem to be the most efficient purely-

passive attitude control systems because they are capable of large

relative motion between bodies, and because they can increase stability

about any given axis.

This chapter presents the results of an analysis of three parti-

cularly interesting connected satellites9 interestin_ because they

possess important engineering advantages while at the same time creating

certain unusual dynamical problems. The analysis of each satellite is

given in essentially similar steps° These are: (i) equations o_ motion,

(2) stability of equilibrium, (3) response to disturbances due to un

eccentric orbit, (4) damping of the transient motions.

The analysis of these examples is preceded by a brief discussion of

a single rigid body in order to display clearly wiuh a simple exm_>]e

some features of the more complicated systems. The _echniques developed

in Chuptevs II_ III, and VIare used freely in this chapter.

The three satellite 0_signs to be discussed are:

(a) Vertistat _ This vehicle, shown in Fig° 7.1, consists of a long

"boom," rigidly attached to the satellite, and two hinged "rods" _ the

end of the boom. The rods are at equilibrium in a plane normal to the

axis of the boom. The boom and the mass on the end provide increased

gravity torque stabilization for the body_ while the rods are coupled

to the boom via a dissipation mechanism to damp the vehicle motions°

A notable exception is Reference B_LL io
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FIG. 7.1. THE VERTISTAT SATELLITE

FIG. 7.2.

FIG. 7.3.

THE BEAM SATELLITE

THE TRAAC SATELLITE
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(b) Beam - This design (Fig. 7.2) uses a small mass attached to the main

satellite by a thin beam; during satellite librations the beam oscil-

lates and thereby dissipates energy (elastic hysteresis), attenuating

the vehicle librations.

(c) TEAAC - This satellite design (Fig. 7.3) consists of a small mass

attached to the main satellite body via a "lossy spring" and a rod

rigidly attached to the body• The spring damps (by elastic hysteresis)

the motions in the orbit plane, and ferromagnetic rods interact with

the earth's magnetic field to damp out-of-orbit-plane motions. This

satellite has been orbited twice.

These three examples of damping and stabilization systems will be

discussed in sequence in the sections that follow.

B. THE SINGLE RIGID BODY

It is well known (see Chapter II, Section B) that the kinetic and

potential energy expressions for the attitude motion* of a single

rigid body in a gravity field are

T a 1 _a Ha a
2 ....

vaRB - 3 k _c . iia . _c
2 3

(7.1)

a ,, tt
where _ is the angular velocity of body a relative to inertial

H aspace axes, is the body moment of inertia dyadic given in (2.9),

Rc is the radius vector from the center of attraction to the center

,, ,, _c is the unit vector in the direction Rc andof mass of a ,

k is the gravitation constant for the particular attracting body in

question.

That is, for rotation relative to the mass center of the body.
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In order to describe the energy expressions in terms of generalized

a a a

coordinates we choose a set of Euler angles, Yl' Y2' Y3' described
AA

by successive rotations about the i axis (yal) , the new 2 axis
,,11.

a ^ _(y2), and then the new 3 axis (y) (Fig. 7.4). The basis unit
A ^

vectors are a i axis along the radius vector, Rc a 3 axis along

the orbit angular momentum vector, and a _ axis normal to the other

axes such that _ x _ = _. The _ axis points roughly along the

velocity vector of the vehicle in orbit. The new set of unit vectors
^ A A

attached to the body along principal axes are la, 2a, 3a and are

. Therotation o eme
given in Fig. 7.4 and the transformation equations are given by

A a^ ^ a a sin la = 1 cosy 2 cosy 3 + 2[cosy I siny 3 +

A _ a a a a+ 3 [siny siny 3 - cosy I siny 2 cosy 3]

^ a a a a a

_a =-_ cosy_ sinr_ + 2[cosy 1 cosy 3 -siny 1 siny 2 siny 3]

^ a a a a
+ 3 [cosy_ siny 2 siny 3 + siny I cosY3]

^ ^ a _ _ a a ^ a a
3a = 1 siny 2 sinY1 cosY2 + 3 cosy I cosy 2

(7.2)

From geometry based on Fig. 7.4 we can derive the angular rates about
A A ^

_ 3a axes ast.._ la, 2a,

a a a a "a a _(_ _a)]
_°i = [YI c°sY2 c°sY3 + Y2 sinT3 +

a = "a a "a a a • 2a)]_2 [Y2 c°sY3 - Y1 c°sY2 sinY3 + _(_ ^

a "a "a sinr_ ÷_(_• _a)]_3 = It3 + Y1

(7.3)

where _ is the true anomaly of the satellite's orbit.

-91-



FI G. 7 .4 . BODY EULER ANGLES

-92-



Using (7.2) and (7.3) in (7.1)_ noticing that _ AC= R , and assum-
A ^ A

ing that the la, 2a, 3a axes diagonaiize H a because they are its

principal axes, we can derive the full expressions for the kinetic and

potential energy of a single rigid body in the gravity field of a

particle.

a 1 a a2 a a2 a a2
TRB = _ [Ii(_ l) + I2(_ 2) + I3(_ 3) ]

a 3 k 2a 2aa a
12) cos T2 cos Y3- 2 iRcl3 [(I1 -

+(I_ - I a" 2 a2 )sin r 2 ]

(7°4)

I. Stability of Motion

a a (the "symmetrical" case) has been treatedThe case 12 = 13

exhaustively in Chapter V from the point of view of the methods of

Stability analysis discussed there_ The case of a general rigid body

will be treated here for the small oscillation case, although the

methods of Chapter V are available for large-angle analysis. In

particular we can obtain bounds on the libration motions using the

stability methods of Lyapunov as applied to mechanical systems°

It can be shown easily for the single rigid body that the system

is in equilibrium any time the body principal axes are aligned with
A A

the rotating mxes l, 2_ _o To investigate this equilibrium_ which

holds for a circular orbit, we may use the relation k/IRC]2_ = n2lR c]

for circular orbits where n is the angular rate of the satellite

orbit. The rate of change of the true anomaly, q, is equal to the

mean angular rate, n. Using a small-angle approximation we may write

the Hamiltonian for the single rigid body as (see 3. 8 ),

! ia..a.2 ia.'a.2 _a_oa.2
H = _ l[Y1 ) + 2tY2 ) + A3tT 3)

+T +

a a 2
(z 3+ - I2)(y i) i

(7.5)

-93-



The above expression for the Hamiltonian gives us the criteria for

stability. Referring to the stability method of Chapter III, we see

that for H to be positive definite the following inequalities must

hold:

a > a > a (7.6)
13 12 I 1

With this information we may state that (7.6) is a sufficient condition

for the stability of motion of the single rigid body. Furthermore, if

there is any dissipation of energy (for example by means of gas-jets

and feedback) the condition (7.6) is both necessary and sufficient for

stability providing there is damping in both pitch (T_)asymptotic

and yaw-roll (_l' Y_) motions (see Theorem V, Chapter III, and its

corollary).

2. Linear Equations of Motion

From the energy expressions (7.1) we may also derive the equa-

tions of motion by using Lagrange's Equations. The linearized

Lagrangian for the single rigid body is

L = 1 (ia "a _ 2 _a.'a 12 l(Yl - ny ) + 12_,Y2 + ny )2

+ 13tY3 + _)2 (7.7)

2 (3(i 2 i1 ) a2 a2 (i3_ i2)(y2)2)n2 - (Y2 + Y3 ) +

Using this in Lagrange's Equation for the angle _i gives

- - Q a
dt -.a _ a Yi

8Yi Yi

(7.8)

tt L • . . t!

inearlzlng, refers to the retaining of all linear terms in the

equations of motion° This necessitates retaining second-order terms in

the energy.
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w

2 a a

p + k32 -hlP

a 2 ;h2P .P + 4k 1 0

2 a

0 0 p + 3k21

n

a

i

aIY2 =

I

i

a I

r3 l
I

_ J

QT_/II n2

Qy_/12n2

QT_/13 n2

+ 2e sinT

In the above equations the products of angles and eccentricity have

been neglected on the assumption of small eccentricity. The relations

for expansions of the coordinates in terms of the elliptic elements

have been used, (SMART 1). The time was normalized to the orbit angu-

lar velocity n by the relation, _ = nt. The nomenclature for the

equations of motion in terms of normalized parameters is:

P

s

T

e

= s/n = normalized Laplace transform variable

= Laplace transform variable

= nt = normalized time variable

= orbit eccentricity

Qy_ = generalized force -- torques on the body
a a

12 - I 1
a - body shape parameterk21

a

k31 -

a

k32 -

a

h I =

a

h 2 =

m

a

13

a _ a
13 I 1

a
12

a a

13 - 12

a

11

ia + i a _ a
1 2 13

a

I 1

i a + a a
1 12 - 13

= body shape parameter

= body shape parameter

a

12
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It is very important to notice that the pitch motions (y_) are

uncoupled from the roll-yaw motions to first order in the angles and

the eccentricity. This property means that any method used for damping

must either damp both motions separately or manage to couple the

motions while damping either pitch or yaw-roll.

3. Forced Motion Due to Eccentricity

The forced motion that arises from the term 2e sin_ on the

right of (7.8) disturbs only the pitch motion, to first order. The

forced motion is

a 2e

Y3 - a sin _ . (7.9)

3k21 - 1

This motion will hold always unless the parameter k21 is set near a

resonance or sub-resonance point of the orbit frequency, or unless the

roll-yaw equations possess a natural frequency that is close to the

orbit angular velocity. These eventualities have been investigated by

DeBra (DEBRA l) for the non-linear equations of motion. The possible

elimination of large motions and instabilities due to resonances is

one of the objects of any design procedure for actual damping systems.

4. Damping of the Motions

There is, of course, no damping of the motions of the single

rigid body. To damp the motions passively we attach other bodies to

the main rigid body and utilize the relative motion between bodies for

damping. The raison d'etre for the systems that follow is to achieve

damping and simultaneously to provide greater stability of the main

body against disturbances.

C. THE VERTISTAT SATELLITE

This satellite design, similar to Breakwell's "hinged satellite,"

was first proposed by Kamm (KAMM I). The satellite (Fig. 7.1) con-

sists of a main body with a long extensible boom rigidly attached;
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on the end of the boom_and at right angles to the boom and the orbit

plane, is mounted a '_pitch rod'S; and at right angles to the pitch

rod, in a plane normal to the boom, is mounted a "roll rod." These

rods are suspended in a pair of torsion bearings from their centers

of mass; their motions are kinematically independent. Damping is

supplied in the bearings either by the viscous action of a fluid, by

magnetic hysteresis between a permanent magnet attached to the boom

and ferromagnetic pieces attached to the rods, or by magnetic eddy

current effects. The pitch rod provides damping for the body's pitch

motion and the roll rod for its (coupled) roll-yaw motion. (Pitch and

roll_yaw motions are_ to first order, independent.)

This system has been investigated by workers at the Bell Telephone

Laboratories (FLETCHER i_ PAUL I) ar;d by Tinling and Merrick of NASA

(TINLING I). These publications show that such a system could be built

and would have dynamical advantages over other passive devices. The

Tinling and Merrick paper describes a system with only one bar placed

across the orbit at an angle of less than 90 degrees to the orbit plane.

This couples all motions and thus provides damping of all modes with

just one rod.

i. Energy Expressions

Consider a rigid body described by the Euler angles YI' Y2'

Y3 in the usual sense of rotations (see Seco B, Part i). The body
A A A

is centered at the origin of the i, 2, 3 system of unit vectors.

The kinetic energy can be easily written using (2.7,8) and defining the

position of the "pitch rod _' (Fig. 7.1) as an angular deflection, 8,

A

from the equilibrium position (which is perpendicular to ib and

A

parallel to 2b) in a counterclockwise rotation about an axis parallel

A

to the 3b axis° The position of the "roll rod '_ is defined as a

counterclockwise rotation of the rod, _, about an axis parallel to

A

the 2b axis and passing through the axis of connection of the rods.

Let us define the mass of the roll and pitch rods m R and mp,

respectively. The rods are taken to be long and thin and thus are

specified by one moment of inertia per rod; let I and I be the
- p r

_97



momentsof inertia about the centers of mass for the pitch and roll

rods, respectively. The rods are suspendedin the bearings from their
centers of lna_ .

Using (2.7) and (2.8) the kinetic energy is written as

b2

T = TRB + _12(_02

I

b2 b
+ _3 ) + _ (w3 +

IR b 2 I b

+ 7 + (% cose b )2
+ _2 sin 0 (7.10)

IR b b

+ -_ (_i cos ¢ + _3 sin ¢)2

where _ is the aistance from the center of mass of the rigid satellite-

plus-boom to the point o£ attachment of the rods. The reduced mass is

defined as

MB (m R + m )
P

MB + mR+rap

The potential energy is written using (2.8) and a linear law for

the tQrsion springs that form the rod bearings. The spring constants

for these torsion bearings are k and k for pitch and roll
sp sr

springs, respectively.

1 e2 1 ksR¢2V = VRB + _ ksp +

+
3 k

2 iRCl3
21i._b)2 + (1.3b) 2]

A A A A IA

+ I [(1.3b) 2 + (1.1b) 2 cos2e + (1.25) 2 sin2e + (1.1b)(1.2_)sin2e]
P

(7.11)

°A A A A A A A A+ IR[(1.2b)2 + (1.1b) 2 eos2¢ + (1.3b) 2 sin2¢ + (1.1b)(1,3b)sin2¢]

2. Linear Model of the Vertistat

It is desirable to have an analytically tractable model for the

small librations of the satellite, while still maintaining sufficient
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accuracy for engineering purposes. We form a linear model by noticing

that the point Yl = Y2 = T3 = @ = 8 = 0 is an equilibrium point for

the system and expanding in power series about this point. Assuming

small eccentricity this gives, using Lagrange's equations, the follow-

ing:

2
p + 3g21 _r 3(p2 _ 3)

-(p2 - 3) p2+ b' P + oJ2
P P

p2+ g32 hlP -2rlP

2+ r2(p2_4)-h2P P 4g31

2_4 , 22p p p2+ bRP+_R

e

I
L_

Y1

T 2

¢

--QT3/n2 (I + C_
P t

I

+ 2e sin't 1(7,12 )

I
QO/n2I_

-2e sin_ I

_ __

IQI ....

r2/n2 (7.13)

I +B
R

Q_

_ .._1 ._..._l

2

In these equations viscous damping has been assumed in the bearings of

= _, Q_ = -bR_the form Q8 -bp

The nomenclature used in the above expressions is the following:

p = s/n

T

Ii,I2,13

I ,IrP

= nt

= Laplace Transform variable for
normalized time

= normalized time

= body and boom mom_tsof inertia

= rod moments of inertia
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B

C

MB ,m'mr p

g21

g32

g31

h 1

h 2

r 1

r 2

r 3

= I2 + _2

= i3 + _2

= distance from body C,Moto point of rod con-
nection

MB(m R + m )
- P, = reduced mass

MB+ mR+ mp

= masses of the main body and boom, roll rod,

pitch rod, respectively

B - I1 - IP

C+I
P

13 - 12 - I R + I p
I 1

C - I 1 + 1/4 I - 3/4 I RP

B¢ I R

C + I - B - I 1 - I RP

I i

C -B - I 1 + Ip - I R

B+ I R

I R

I R

IR+B

I
P

I +C
P

b !

P

t

bR

b
P

nI
P

b R

nI R

2

P

k
sp

2
n I

P

k
sR

2
n I R

3
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The stability conditions are obtained from the requirement that

H be positive definite. This is equivalent to requiring the principal

minors of the matrices (7.12) and (7.13) to be positive with p = 0.

This computation gives the following inequalities:

g21 > 0

2
Co >0

P

2

g21cop - 3r3 > 0

g32 > 0 (7.14)

g31 > 0

2
CoR > 0

2

g31coR - 4r2 > 0

These inequalities relax the condition on the shape parameters of the

2 2
body if Co , CoR are large enough. Notice that none of the stabilityP
criteria in this chapter depend on the damping parameters if H < O;

this property follows from Theorem IV in Chapter III since the testing

condition for stability is independent of P and dependent only on

U. This is stated as a Corollary to Theorem V of Chapter III.

3. Forced Motions

The forced motions of (7.12) due to eccentricity of the orbit

can be determined by the usual methods. The motions are given by

solving

co - 1 + jb" ,i
P

2ej (7.15)
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where e = _e J_, Y3 = Y3 eJ_" The solution of (7.15) gives the motions

for small eccentricity. Let

a = (3g21 - 1)(_ - 1) - 4r 3

' ( - 1)
6 = bp 3g21

Then, the forced response is

Y3 = -- 5( - 1 + 2r 3) + bp6] sin_
a 2 + 6 2

+ [bp_ - 6 (_p2 - 1 + 2r3)] cos_ )

2e(3g21 + l)
e =

2 62_ +

[- 6 cos_ + _ sinai

(7.16)

Since for good attitude control we would like Y3: small, it

b' such
may well be that there are choices of parameters _p, r3, P

that Y3 is minimized. It will be shown below that there exist

sets of parameters for which Y3 _ 0. These are the so-called

'_ibration absorber" designs so useful in design of machines. Clearly

the condition for such designs is that the coefficients of both sin

and cos _ in (7.16) for Y3 must be zero. This leads to the equa-

tions

i

(2 - 1 + 2r 3) b'
P P

b' _( 2 - 1 + 2r 3)P P

m _
D -n

0

0

These require that, quite independent of _ and

vanish.

(w 2 - 1 + 2r3 )2 + b '2 = 0
P P

6, the determinant
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This is impossible except for the undamped case

in addition,

(b' _ O)
P

for which,

2

w = 1 - 2r 3P
(7.17)

for vibration absorption. In this case the motion is

For stability w 2 > 0, so
P

e
sin

r 3

(7.18)

0 < r 3 < 1/2

3r 3

g21 > 1 - 2r 3 < 0 (7.19)

must hold for simultaneous stability and vibration absorption. Notice

that, since r 3 < 1/2, trouble with damping will be encountered for

vibration absorber designs. This is true because the coupling between

the T3 motion and the rod motion (e) will be very weak and there-

fore the T3 motion will converge much too slowly. This will be seen

more clearly in the next section.

4. Damping of the Motions

The vertistat motions in response to initial disturbances can

be calculated for arbitrary, light damping forces by the method of

Chapter V_. In this section the methods of approximation developed in

Chapter VI will be applied to the motions of a typical vertistat design

with magnetic hysteresis damping.

Yaw-Roll

The characteristic determinant for the yaw=roll case is found from

(7.13) to be
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2 2

_yR(p2) = [p2+ g32][p4(1 . r2 ) + p (4931 + _R ÷ 8r2)

+ 4_ g31 " 16r2]

+ h2p2[(hl + 2rl)p2 + (hl_ _ - 8rl) ]

÷ 2p2[(hlr2 + 2rl)p2 + (8rl g31 - 4hlr2)]

(7.20)

' = 0 The solution for the response envelope can be written,
with b R .

following Chapter_ _ect_on Bp as:

p-

I

T1

T 2

¢

1

A21

A31

I i -/_l ej (c°l'_

A22 A23 e

A32 A33 3 e __

(7.21)

where the "mode shape factors," Aij ,
are

A2 k _ jwk
D k Nk

A3 k = jwk
D k Mk

after defining Nk, Mk, and D k as:

Nk = h2(_ 2 _" 2) - 2r2(4 + O_k2)

: 2( 2" 4931)+ h2(4 ÷

Dk = (4931 - COk2)(to2 - 0,)2) . r2(4 + Co2"2k)
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The method of calculating the response of the system to initial

disturbances follows that discussed in Chapter V_ It consists of re-

quiring that the amplitudes_ vary with time in such a manner that

the rate of change of energy equals the average power lost in damping°

The Hamiltonian can be written upon averaging as

3

k=l

The power balance relation is

3

• )],
k=l

This equation must be supplemented by a relation between the average

power and the amplitudes J_. This relation is derived or taken from

experiment by defining the average to be

T

1
/ P(t) dt

P = lim
u
0

A

In this time integration the variables _/k and JL k are held constant.

At this point it is assumed (for lack of experimental evidence as to

the analytical character of P) that the energy dissipation per cycle
A

of oscillation depends onlv on the amulitude A_. J_. and, further-
" JK K

more, that the energy dissipated in each model oscillation is inde-

pendent of that dissipated in the other modes. This means that in

traversing the magnetic hysteresis loops the form of the area swept out

is the same for each oscillation frequency. These considerations lead

to the following functional form for the average power dissipated.

3

P = - k IR _R
k

k=l

(7.22)

(7.23)

(7.24)

where k is a "damping parameter."

-105-



A

If the function Fk(A3/_ k) is quadratic (the linear case) then

we obtain the following solution to the transient problem:

3 3

k=l k---1

Bk= k I R 2 ]A3k ]2 (7.25)

In the present problem the energy coefficients are calculated using

(6.21) and the Hamiltonian, H, as

Ira+8 {r_
Hk- 2 rI + IA2k 12+ r2 IAak 12

+ 2r2Re (A2kA;k)}_Ok 2

I R + B i r2

2 l g32 + 4gmllAmkl 2
2 2

+ r2_ R IA3k I

8r 2 Re(A2k * )- A3k)
.J

The solution to the equations of (7.25) are simple exponentials given

by

_k(t) =_k(o)e _mlt/Tk

Ek
(7.26)

where Tk is the "time constant" of the envelope decay.

As a specific numerical design example assuming the "linear"

damping of (7.25), the following vehicle parameters are chosen; they

have been chosen by trial and error and are not in any sense optimum.

I 1 = 12

B =C

= 13 = 120 slug ft 2 = body moments of inertia

= 1020 slug ft 2
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= i slug

= 30 ft

I = 50 slug ft 2
r

I = 112.5 slug ft 2
P

g21 = 0.75

g31 = 0.83

g32 = 0.52

h 1 = -0.48

h 2 = -0. 054

r 1 = 0.42

r2 = 0.05

r 3 = 0.1

_02 = 4.0
r

2
_0 = 2.22

P

= mass of rods, etc.

= length of boom

= inertia of roll rod

= inertia of pitch rod

Using the above parameters and solving for the roots of A the
yR'

shape parameters, Aij , and the time constants gives the results (see

Fig. 7.5) of Table 2.

TABLE 2

Mode Number _k A2k A3k kTk
k

1 0.565 -j0.034 -j0.35 1.35

2 1.69 jl.18 +ji.23 8.5

2.66 -j0.44 j3.28 1.07
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r

k=l

ir

k=3

k-- 2

3r

_r

FIG. 7.5. MODAL MOTION FOR YAW-ROLL OF VERTISTAT (YAW MOTION; sin(o)

IN ALL MODES)
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For the case of k = 1/8n the longest time constant is T 2 • 213

(or 34 orbit periods). This iS a realistic but possibly conservative

estimate of k for the magnetic hysteresis case and corresponds to a

situation in a one-degree-of-freedom system where one-half of the peak

stored energy is dissipated per cycle of oscillation. The actual

magnetic materials will behave in a non-linear fashion which will now

be shown.

Since we do not have data on _ we may use the single-degree-of-

freedom result given in Ref. FISCHELL 3 for ferromagnetic materials

in large oscillations. Generalizing the result for one degree of

freedom in an obvious way gives a power law behavior for the dissipation

in each mode (still assuming that the dissipation doesn't couple the

mode response).

where is a coefficient that is not equal to two (linear case) but

is not necessarily an integer. The damping law of (7.26) gives an

envelope response differential equation of the form

+ =0 (7.27)

These three differential equations may be separately integrated to give

the time response of the envelopes.

i

I ]J_k(_) (_-2) _ 2-_

_k(o ) - 1 + _(o))2._ Tk (_> 21
(7°28)

The concept of "time constant" is generalized by the definition
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It can be seen that, for the value often given for magnetic materials,

(FISCHELL 3) _ = 3, we get a response which depends on the initial

conditions but is a well-behaved hyperbolic shape:

1 (7.29)

For the cases 2 > 3 we run into trouble and the response takes a long

time to damp out for small initial disturbances. It goes without saying

that in these considerations the constant k takes on different mean-

ings for each value of _.

Pitch Case

The characteristic determinant for the pitch motion is found from

(7o12) to be

%(p2) = (p2 + 3g21)(P2 + e_) - r 3 (p2 _ 3) (7°30)

2 2

with _p 0° Let us assume that 3921 _ _p or that 3g21 ep + J6°

Here e = I /c << 1 and J < 1o We can now factor the biquadratic
p

(7.30) and approximately determine el, e 2 for small 6.

2 2 J 1/2(e2
e I = O_p (i + 6) * (3 + _)e - e + 3)P

2 _o2 (i + e) + (3 + J)6 + 61/2(oo 2 + 3)e 2 = p P

e + 3 + J/2

e p

i+_ e2+3
P

e 2 + 3 + J/2

e p
2

i e + 3
- p

The mode shape factors are, for this problem:

2
el + 3

A21 - 2 2

eI - _Op

e2+ 3

A22 - 2 2
e 2 - e

P
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The solutions to the equations of motion are, thenp

J (('°1'I+_1) "_2 j ((_2'I+_2)7'3 =Ae + e
1

e = A21-/_-I ej(_l_l) ÷ A22-_2 ej(_2_+_2)

(7.31)

The energy coefficients are found to be

:_ + _ ) + (IA2k _21 "Ek 2A2k)

and the power coefficients are (for the "linear" case of (7.25))a

(7.32)

.I'k = XIp _Op31A2k12 (7,33)

for magnetic hysteresis damping, The time constant of the transient

decay is

Tk = kI _31A2k12 "'-_k
p P

where A k +(Pk_k)J_ k = 0 and _k :_k le)e-_/Tk"

As an example of a typical design_ let:

(7.34)

2
co = 2.22

P

g21 = 0.75

J = 0

e = 0,ii
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This gives o using (7.24-28):

A21 = "3.14 ; e I = 0,975 ; AT 1 = 0.73

A22 = _o18 ; to2 = 2,14 ; kT 2 = 1.18

The forced response of this example is:

Y3 = -l,8e sin

e = 3.2e sin T

Using the results for the damped motion we can estimate the time

constant of the transient decay. The largest time constant becomes

T 2 = 33.3 (5.3 orbit periods) if k = 1/8_. The forced response may

be unacceptably largep since for e = 0o05 the excursions exceed eight

degrees. In all cases of passive gravity attitude control the ec -

centricity must be small; this is achieved by proper injection into

orbit.

5o Tumbling of the Vertistat in Pitch

In the design of a particular satellite system (e,g.p the

Vertistat) it iS desirable to know the effectiveness of the passive

damper in attenuating the tumbling rates that might occur in the course

of operation, The methods of Chapter IV produce a differential equation

relating the average pitch tumbling accelerationp Nt_ to the average

pitch tumbling rate, N. This equation can be solved for the rate_ N_

as a function of timeo In this section the Vertistat motions in tumbling

are studied and the results are related to those for the "resonant"

case of Chapter IV.

The equations of motion of the Vertistat in the pitch plane with

8 << l_ y arbitrary_ are
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_, (_ + 3)e + b' e' - - -------- sin 2y_ p 2 1 - r 3

1 - r 3 (7.35)

b' 2+ 3 3 3 g21 sin 2T

e" + ____E_-Pe' + .2____--e = sin 2(_ + e) + _ i- r3
I - rS i - r3

where d/d_( ) = ( )' and T = nt. These equations assume that the

pitch tumbling motion is stable and that rod motion is small (e << 1).

The motion of the system can be approximated by the following,

e:_+UlCOS _+_l sin 2V

X_ = k_ + a2 cos 2_ + B 2 sin 2T

(7.36)

T = V + =3 cos 2V + _3 sin

where Gi' _i are functions of _ as in Chapter IV. Using (7.36)

in (7.35) gives the following equations for determining the Gi' _i

a_d _, _, ¥.

3 g21 )( 2b'N i__2_--) Z
51 = - _ (i + I - r3I - r3

_i = 3 i 4N2 --
51+ - - _-F n

1 - r3/\

G2 = 2N 8 3

{_2 = -2N G 3
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1
0_3 = 2N

where

4N2b'2 1
9 4N2)(__ 4N 2) + p

A = (_ 4 _ (i_r3)2

2
_+ 3

1 - r 3

Now the barred variables are solutions to the equations (in steady

state e motion).

_= 3_ al
2 /C

N'= - {2K b'p _ +_-_N L }

(7.37)

where,

o(r3)(K = - _- I - r 3 i + i - r 3

.1 ..1)(
L = - 3"--"_ 1 _ _3 1 + 1 . r3 1 ' _3]

are constants.

with time.

term in the

The solution to the second of (7.37) gives the secular decay of N

The term L/NA is smaller of order 1/N 2 than the first

N' equation. Thus an estimate of the motion if given by

N
N' < - 2 b' K -- (7.38)

-- P A
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where the error is of order I/N 2 and this is small for N << I. The

strict equality in equation (7.38) yields the sameresults as equation
(4.17) and the results conform to Table 401 £or the resonant case.

if the parameters K of the two problems are identi£ied with one
another.* The results using (7.38) to estimate the response give, of

course, slower response than the results using (7.37), but they are

useful because of the existence of Table 4.1.

An example of the use of Table 4.1 can be given using the design

of Section C Part 4. The relevant parameters are: g21 = 0.75,
2

r S = 0.1, 0_ = 2.22° The result of Table 1 of Chapter IV for NO= 4P
and Nfina I = J3 is that the optimum time to decay is (_c)opt = 19
or about three orbit periods. The time to decay using an arbitrary

value of the damping parameter, _, is (see 4o21)

21
Tc 1 _ + 3.6 +

(Tc)opt - 2 3.6 TI 3.6_

For a value of q which is 5 percent of critical (_ = 0.15) the time

to decay is 473 (75 orbit periods)°

D. THE BEAM SATELLITE

This satellite has not yet been discussed in the literature but is

a natural simplification of the TRAAC design using elastic hysteresis

damping. The system consists of a main body and an extensible 'Beam"

which is flexible and cantelevered to the main body (Fig° 7.2). The

beam must be flexible enough to allow fairly large excursions relative

to the main body and thus significant stresses in the beam material;

this is accomplished by adding a mass to the end o£ the beam. This

mass also "amplifies" the gravity stabilization effect° The beam is

coated with Cadmium or some other "dissipative" material to enhance

damping by the material.

, b'p 2 2

We must also identify _D, _ - 1 r3 ' _0 = 3 +- p
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This system will be feasible if the beam can be made to be limber.

The system is elegant and simple and, furthermore, provides damping to

first order in both the pitch and roll-yaw motions. This obviates the

need for magnetic rods or other means of achieving roll-yaw damping.

Other systems similar to the beam system can be devised. One might

consider a series of short rods joined by some kind of viscoelastic

material which would provide damping and spring restoring forces.

This system would look quite like the beam dynamically but would have

advantages in deployment and in the fact that the rods could be made

more rigid.

i. Energy Expressions

Consider a rigid body with its center of mass at the origin
A A A

of unit vectors l, 2 w 3 as defined in Section Bo A vector Rb

defines the position of the particles along the length of the beam

with respect to the center of mass of the rigid body. This vector

is expressed in coordinates along the principal axis system of the

A A A
rigid body (lb r 2b_ 3b)o Since the beam is connected to the satellite

A
at a point a distance a along the lb axis (Fig. 7o2), the vector

R b can be expressed as

R b '_ A A= b(a + x) + 2b y + 3b z

The functions x, y, z are functions of the arc length, s, along

the beam in the deflected position. These quantities are, of course,

the rectangular coordinates of points along the deflected beam with
A

center of the coordinates at the point lb ao It shall be assumed that

all the mass is concentrated in the end of the beam -" the beam is

massless. This is a commonly made approximation for first bending mode

analysis of actual beams; the mass at the tip is increased to account

for the beam mass. If the reduced mass is given by _, the kinetic

energy of the system can be written as follows (x = 0) using (2.117)

and (2o;8):
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1 ob b _b 12

T = TRB + _2 {[; + _b z" cob y]2
(7.35)

b (a + L) b z]+ [_+ co3 -col + [ Y -_ co2(a + L)]2

where YI' Y2' Y3 are the Euler angles of the rigid body as defined
b b

in Section B and where co_P co2' _3 are given by (q.3)

b e A
C°l = Y1 c°SY2 c°SY3 + _2 sinT3 + _ (_ " Ib)

b = " sinT 3 + .co2 -qc°sr2 r2 c°_r3 + _ (_ _b)

b " " * ^ ^
(°3 = Y3 + rl sin"2 + _ (3 . 3b)

where the direction cosines are given in (7.2)°

These equations use x, y, z to represent those functions of arc

length, s, evaluated at the end point of the beam, s = L. In a

similar manner the potential energy of the system due to gravity can

be derived using (2. fl)° If we define the proper tensor according to

(2.191), we get the following:

2 2
y + z

-(a + Idly

-(a + L)z

,_(a + L)y -(a + L)z |
|

z + (a + L) 2 yz

-yz y (a + L)
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v=v + { ltr b
g ]R_C]3 - E b

V =VRB+g

+2" " b

k_ { z2 L)2 ]l_Rcl3 _ [y2 + + (a +

3 ^ ^ 2) ^. 2+ _" [(l.lb)2(y 2 + z + (l'2b) ((a + L) 2 + z 2)

4 (1.3b)2(y 2 + (a + L) 2) (7.36)

- 2(1.1b)(l'2b)(y)(a + L) - 2 (l.lb)(1.3b)(z)(a + L)

- 2 (1.2b) (1-3b)yz]}

The potential energy of elastic deflection of the beam is given by

using the Lagrangian density

= E1 i )2
_ -2- [(y,,)2 + (z,,)2] _ 2 P(s)[(y' + (z') 2]

and the following equations of motion for the beam and the end condi-

tion y(L,t) and z(L,t). (see Appendix C.)

b2 < b_)__ __ b <b_ )__ : 0
bs 2 by" bs by'

5s--5 bz" - _s bz'

all s (7.37)

g) b (T-V) b.l_, b._

__ _ _ g + _ = Qy
dt b y b y by" by'

s = L

d <b(T-V ))g b(T-Vg)
dt 5 z b z 5z

s=L

-i18-



where P = 3_n2(a+L). The third and fourth of (7.37) are boundary

conditions at the end (s = L) of the beam. The other boundary conditions

are given by

yt = Z' = y = Z = 0 (s = O)

,, ,t

y = z = 0 (S= L)

The equations of beam bending are from (7.37)

EIy""(s) "- Py (s) = o

SLz""(s) - Pz"(s) = 0

all s (7.38)

The equations of motion for the beam satellite are formed by using the

ordinary Lagrange equations for T1 , T2 , T3. The equations are com-

pleted by using the solutions to the bending equations (7.38) in the

end conditions given in the third and fourth equations of (7.37). These

five equations of motion of the beam satellite are used in what follows

to analyze the dynamics of the vehicle.

2. Linear Model of the Beam Satellite

It is desirable to investigate the small librations of the beam

satellite about the equilibrium solution Yl = [2 = T3 = y = z = 0.

This can be done by writing the expressions for T and V out to

second order in the coordinates and velocities. Defining "angle"

variables _y = y(L,t)/(a+L) and _Z = z(L,t)/(a_L), the following

equations of motion are obtained using Lagrange's equations:

2+ 3921

2+ 3)

K3(p2+ r3 r3/(I '+ 13)

= l+2esin_ _

p + _y

t.+2e sin _ -4

(7.39)
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m

p2+ k32

h2P

0

-hlP

p2+ 4g31

_(p2+ 4)

0

-K2 (p2+ 4)

2 _2
p + 1 + B

Y1

Y2

m

2

Q-F1/I1n

Qy2/(I '+ I2)n2

Qz/_t (a+L) 2t_2

These equations represent the pitch (7.39) and roll-yaw (7.409 motions.

The Hamiltonian may be derived in the usual way to be

F

H = _. (13+ I')r 3 + I'( + *z ) + Iffl

- 21' _zy2

f-1 2
"_ (I '+

+ _ [3g2! I3)Y3 + 61' _/yY3

(7.40)

(7.41)

2+ _2B I' %y2 + (i, + _ )I' 2 + k32 llYl

+ 4g32(I'+ I2)y2- 8I' *zY2)

The normalized variables are:

= nt = Normalized Time

p = s/n

a2 = 3 _--L'-I c_L (1 + e

B (0_- i) + (0_ + 1)e -20_

P = 3_m2 (a+L)

2
(2 = P/El
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I - I + I'
3 1

g31 = 12 + I' K1 = I'/I 1

12 + I' - I 1

g21 = I' + 13
K2 = I'/(I' + 12)

k32 -

13 - 12

I 1
K3 = I'/(I' + 13 )

y = (a + L)_/y h 1 =

I1 + I - 132

I1

z = (a + L)_z h 2 =

I 1 + 12 - 13

12 + I'

The physical variables are:

mM

M+m

Ii, 12, 13 = moments of inertia of main body about ib,
_b, _b axes.

EI = beam structural rigidity

I' = _(a+L) 2

L = length of the beam

a = distance of beam mounting from C.M. of main body

e = orbit eccentricity

= torques and forces acting on the system (generalized
forces)

The stability inequalities for H > 0 (Theorem IV, Chapter III) are:

3K 3 4K 2
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These requirements for stability are, as in the Vertistat satellite,

weaker than those of the rigid body; they grow weaker monotonically as

_B increases (beam stiffens). Note that for zero elasticity, _ =

3(l+a/L).

3. Forced Motions

The pitch plane motions are forced sinusoidally by the accelera-

tions of the reference system caused by orbit eccentricity. For small

damping and small eccentricity the linear model of (7.39) gives approxi-

mately:

3g2_ 1 2K 3

2 _2 1
B

we assumed Y3 = _13eJ_'
Here

gives the forced response.

| |

%_]y.

_y = _ yeJ_.

l

= _2ej

1

The inversion of (7°43)

(7.43)

2e[_2 1 -" 2K 3]

Y3 = {( 2 -_) sin _3921-1) (a :1)

(7.44)

6e(g21 - i)

_y = sin

{ (3g21"i)(_-I) "_ 4K3)

_2
For vibration absorption in Y3' B = I+2K3" This requires

1 <-- _B_2 <_ 3o We can get a minimum _2B = 3(l+a/L) > 3, so vibration

absorption of the eccentricity disturbance is not possible in the beam

satellite but, of course, can be approached quite closely.
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It should be emphasized that the foregoing has considered only dis-

turbance due to eccentricity of the orbit, and therefore, the vibration

absorption results are for this case. One must in practical cases

include other periodic disturbances; it may be possible to do some

filtering of these by adjusting parameters.

4. Dampin_ of the Motions

It is desirable to apply the methods of Chapter Vl to the pitch

motions of the beam system with hysteresis damping in the beam. The

damping is not expected to be heavy and therefore asymptotic methods

are useful.

Consider the pitch equations (4.39) with zero forcing and no damp-

ing. The solution to (7.39) is given by

J(_l%+_l ) J(_2_+'2 )

r 3 = Ale +_2 e

_y = A21A1 ej(_l_+_l) + A22 -/5k-2 ej(_2_+_2)

(7.45)

where the 'Rode shapes" are written

A21 =

A22 =

2

3g21 - e I

K 3(3 - 2)

2

3921 - _2

K3(3 - w_)

It is understood that we take the real part of (7.45) to find the solu-

tion. The energy can be written

H __

+

I'+ 1
3

2

I '+ 13

2

+ 2K3_yT 3 + K3_y]

2 2

[3g21 T2 + 6K3_yT 3 + K3_B_y]

(7.46)
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At this point an assumption must be made as to the behavior of

the beam under elastic hysteresis damping. In the absence of any good

evidence about the behavior of materials excited by almost periodic

functions, it will be assumed that each frequency component traverses

a hysteresis loop with the same phase lag, @, as every other. The

average power in the present example, computed on this basis, is then

__2 I'
2 2

2 _ IA2k'2A2 =- _'k A2 (7.47'

k=l k=l

The coefficients H k in the energy expression can be written

I'+I 3

"k- 2 [1 + KslA2k12+ 2K3A2k ] 0ak2

I '+I

3 n2 I 12+ 2 [3g21 + - BK3 A2k + 3K3A2k ]

(7.48)

The differential equation of energy balance is

• A --0
Hk_k + Pk k

and its solution is

_A.k(_) =-/_-k(o)e-_/Tk

where

H
k

Tk = Pkk

It remains to factor the characteristic determinant and find _k;

then the A2k must be computed along with the Tk. The characteristic

determinant is
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D(p) = (p2 + _)(p2 + 3g21 ) _ K3(p2 + 3)2 (7.49)

It is interesting to consider the special case k21 = O, a neutrally

stable bod_. The analysis is restricted to the case of a long boom

(relative to body dimensions). A long boom is needed for static sta-

bilization and because length in the boom decreases _B to levels
2

where the system is able to damp sufficiently. (Note that _B varies

in proportion to l/L3.) Since K3 = 1/<l+I3/I') , if I3/I' = e <<l,

then K 3 = 1 - 6 approximately. Using this fact one can approximately

factor (7.49) obtaining as natural frequencies

2 9e 2/(_ ,2 3)
C01 = 3 - 3E - , --B

This gives, using (7.48), the values for A2k and Tk.

3E

A21 - _2
B - 3

1
A22 -

I - E

_T 1 _ 3D,zl + 9 + D,B +

4(_B2- 3)

_F_ [_B2+ 3 + e ]

2 - 3_T2 I_2-_ _B
B

Figure 7.6 shows a plot of 0T 1 vs. E for various _2.B

seen that the beam must be flexible and still not too long.

case shown T 2 < < TI.

It can be

In the
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Consider the following example. Let IS = 120 slug ft 2,

I' = 1200 slug ft 2, _ = 1 slug, L = 34.5 it, _ = 3.5, with a

berrylium-copper beam (E = 18 x 102 psi), be the parameters of the

system in pitch. Using a hollow cylindrical shell for a beam gives

a stiffness for the beam of El = _E_R3. * A typical realizable thick-
o

ness, 5, for the cylinder wall is 0.002 inches and, along with the

radius of the cylinder R , defines the system completely. From the
o

body parameters we see that for this design @T 1 = 6.9. Using the

formula for _, given under "nomenclature," we can calculate the

radius of the cylindrical beam as R = 0.076 in. This means that
o

with a reasonable size tubular beam we may realize a time response

@T 1 = 6.9 and with the cadmium coating available for TRAAC we might

well assume that @ = i/8_. This gives T 1 = 173 (or 27.6 orbit

periods). Thus with "reasonable" dimensions for the beam this body

was damped in pitch in the order of the time needed to damp TRAAC

(Section E, Part 5). This compares with an approximate result of 5.3

orbit periods for vertistat pitch motions.

The stiffness of the beam (EI) assumes a hollow, closed cylindri-

cal shell. If the beam is constructed by rolling up a prestressed

sheet of metal (as in the STEM unit used in connection with the TRAAC

satellite) then the stiffness will be decreased by a factor depending

upon the details of construction. It is hard to imagine that the fac-

tor EI would be decreased more than a factor of ten: in this case the

cylinder's radius would increase by a factor of _0 = 2.15. Thus it

can be seen that the radius of the cylinder is relatively insensitive

to the value of EI for a given beam frequency, %.
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E. THETRAACSATELLITE

This satellite design, due to Fischell, et al. (FISCHELLi,

FISCHELL2), has been orbited twice; the second time it was evidently

successful. This is the only design of a purely passive system that

has been orbited by the West. The satellite consists of a main body

with a 100-foot-long extensib]e bo_,J]_ (Fig. 7.3) at the end of which is

attached a 20-foot-length of very limber helical spring (7.6 ±nches in

diameter). The spring carries an end mass weighing 3.85 pounds. The

spring is beryllium-copper wire (0.008 inches diameter) coated with

Cadmium (0.0002 thick) to obtain good damping characteristics due to

stresses in the Cadmium. By a torsion pendulum experiment on the

spring wire in the laboratory it was determined that for oscillations

of 55 minute periods approximately half of the maximum energy stored

in the spring was dissipated per cycle of oscillation. Thus in the

TRAAC satellite the spring's elastic dissipation provides the damping

and the long boom-spring-mass system provides the position restoring

force.

The spring, however, only provides damping (to first order) in the

orbit plane (pitch). For the roll-yaw motions the system uses ferro-

magnetic rods which interact with the earth's magnetic field and produce

damping torques by means of magnetic hysteresis. The combination of

spring damping and magnetic hysteresis rods succeeded in damping the

peak pitch oscillations from 44 degrees to 6 degrees off of equilibrium

in about 8 days or 115 orbital revolutions (I00 minute orbit periods).

This transient response is rather slow. One would like a decay

of the order of a day so that large disturbances (e.g,, meteoroids)

would not disrupt operation of the system for many days. This is

particularly important for communication satellites.

i. Energy Expressions

The TRAAC satellite system (Figs. 7.3 and 7.7) consists of two

" "b")rigid bodies (labeled "a and connected together by a very limber,

helical spring. The model to be considered assumes no torsion in the

-128"-



BODY A

\
\
\

x \
\

b b

\
\
\
\
\
\ BODY B
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spring; after deriving more general equations for the energies we will

assume that one of the rigid bodies consists of a point mass (no rotary

inertia)a This model will portray the salient features of the system

and still lead to a manageable analytical problemo

"b" K bThe inertia dyadics and masses of bodies '_a and are K a,

and ma_ mb9 respectivelya The Euler angles of the body axes with
a a a

respect to the rotating axes of the reference frame are Y19 Y29 Y3
k

and y_, W_, y_. The distance between the body centers of mass is

called x and the unit vector from the CoM. of "b" to the CeM_ of

,_ T) A A

a is ixo The direction of ix with respect to the reference axes
A A

(I) 2) _) is given in Figo 7o8 by Euler angles _ e°

A A ,%

The reference coordinate system to be used is a system if 2_ 3
A

whose 1 axis unit vector points along the radius vector _ RC)_(_
A

A

whose 3 points along the orbit angular momentum vector and whose
A A A A

2 is such that 2 = 3 x lo This coordinate system is centered at the

center of mass of the entire system of particleso

" "b"The body systems for "a and are described by Euler angles

Y1 ) Y2' Y3 (Figo 7.4) which are the angles of successive rotations
A A A A A

about the l) the new 2 t and the 3a and 3b axes where the la r
A A A A A

2a, 3a, lb, 2b) 3b_ are body unit vectors (aligned with the principal

axes of the bodies) and are centered in bodies "a" and "b"p

respectivelya

The Euler angles @_ 0 are shown in Fig. 7o8. These angles des _

A A A A

cribe the direction of lx with reference to lp 2_ 3o

The expressions given in (2.:7) and _2,_) are, for this problemp

1 ,.,2 a b (7.50)
T = 2-_t_) + TRB + TRB

(7.51)

v_-o {g VRB + VRB + ..IR_ I3 tr + ..,

a b awhere TRB , TRB _ VRB _ are in (Chapter VI_gSeco B_ Part i) and

involve "rigid body termso" The reduced mass _ and the quantities

_cp , x are given by
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• 2 "2 x2[ cos2_]x =x + /_2+ (b+;_)2

= x2[_x _x + 3x _x]

_C A A= 1 = _x cosecos@ - _x sin8 - 3x cosOsin@

mam b
-

ma+m b

Here we have used _ to indicate the true anomaly of the orbit. Using

the above in (7.50) and (7.51) gives for the kinetic energy and the

potential energy due to gravity:

a b {x 2 2 [_2 + (_ + _)2 cos2_] }T = TRB + TRB + _2 + x (7.52)

2
a b + __x

Vg= VRB + VRB 2

k

I 13
1 - 3cos2_ cos28} (7.53)

The potential energy of the spring (linear) is given by the ex-

pression

V = _ a(l_ I - _ )2 (7.54)
s 2 -- s

where G is the spring constant and I_I and _s are the lengths of

the spring in the stretched and unstretched positions, respectively.

The distances from the body centers of mass to the points of connection

" "b"of the spring are given by b a and b b for bodies "a and ,

respectively. The vector expressions are as follows, from geometry

(Fig. 7.6).

-132-



= x + b a - b b

A

x=lxx

b a ^ b a= -la

h b = _b b b

Using these relations one finds that

+ (b a)2 + (b b)2
^ ^

+ 2babb (la. ib)

^ ^ bb ^ A-- Zx(b a ix'la + ix.lb)

(7.55)

where the direction cosines are given by

=

+ sine cos_(cosYl sin_ + sinYl siny 2 cosY3)

a

+ sin_(siny I siny 3 - cosy I siny 2 cosy 3)

A

_x'ib = cosZ cose cosyb2 cost b (7.56)

+ sine cos_l(cosy b sinyb3 + siny b siny b cosy b)

+ sin@(sinYl b siny b - cosy b siny b cosy b)

^ a b a b
_a.lb = cosy 2 cosy 2 cosy 3 cosy 3

b b b b.
+ (cosy I sinY3 + siny I siny 2 cosY3)(cosYl b sinY3+sinYlsinY2cosy 3)

b b b b-

+ (sinYl sinY3- cosy_ siny 2 cosy_)(siny b sinY3-e_)SYlsinY2cosY3)
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Using (7.54)-(7.56) in (7.52) and (7.53) we get the complete energy

expressions except for the rigid body terms,

2. Linear Model o£ TRAAC

The equations of motion are derived by energy considerations

and turn out to be (in the linear approximation to first order in

eccentricity) with body "b" considered as a particle (Hb = 0).

p2+ 3k21 + 3K3r .3rK 3

2
-3r p + 3(l+r)

0 -2p

p2+ k3 2 _hlP

2
h2P P + 4k31+ 3K2r

0 • 3r

m

0 Y3

2p e

p2+_2-3
(z

0 Y1

+3r K2 I Y2

p2+4+3r _0__]

L

"--'I

=2

Qe/I 'n 2

+ 2esin,_

Q_/I 'n 2 :

+ 10ecos_ !

(7,57)

2

QY1/Iln !

Qy2/I2n2 :(7.58)

i Q_/I in2

where the normalized parameters are

r _-

b b

Xo - 'b _o

_2 (Z
a- _2 = 3

_n
x )o

x - x
o s

p=s/n

= nt = normalized time

x=x (i+_)
o

hl= I1

I1 + 12 - 13

2
I' =_x

o h2 =

I 1 + 12 - 13

1
2
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mareb
w

ma+m b
K1 = I '/I 1

12 - I 1

k21 - i3 K2 = I '/I 2

k31 -

13 - I1

12

K3 = I'/I 3

13 - 12

k32 - I
1

The physical parameters are:

Q. = torques and forces acting on the system
J

s = Laplace transform variable (angular frequency)

b = boom length

n = mean angular rate of the satellite in orbit

e = orbit eccentricity

x = equilibrium distance between the C.Mo of main body and m
o

m = mass of body '_"'

Ii,I ,I 32

A A A

= moments of inertia of body about la, 2a, 3a

= spring constant of helical spring

static deflectionx = sprxng
S

-135-



Notice that the TRAAC linearized equatioasimply a decoupling of the

orbit plane motions, (7.57) p from the out-of-plane motions, (7058),

(pitch and roll-yaw are analogously decoupled in the case of a single

rigid body).

The Hamiltonian for the system of linearized equations can be

derived by referring to (3.18) where it is shown that

H = T 2 + V - TO

This relation applied to the TRAAC system gives

H = _ iY1 + i2Y2 + i3Y3 + i,(_2 + _2 + _2)

+ _ 13(k21 + rK3)Y_ - 3(rK3I 3 + r It)Y3@

+ 310_+_e2 + (_2 - 3)it_2
j

1 _k 2 Y2+ 2 32 IIYI + (4k31 + 3K2r)It 2

+ 3(rK2I 2 + rIt)_y2 + (4 + 3r)I'_ 2)

(7.59)

By the theorem given in Chapter III (Theorem IV) we know that H must

be positive definite while H is negative semi-definite (Theorem V)

for the system to be asymptotically stable, The powerp P = Hp is

negative semi-definite since energy always leaves the system due to

elastic hysteresis action, This requires that U = V - T be positive
o

definite in the angles and in _, The stability inequalities are,

thereforep
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_2 > 3

rK 3

k21 > < 0 (7.60)
1- r

k32 > 0

- _ < 0

k31 > 16 1 + 3/4 r

For the stability of a single rigid body with damping k21 , k31 , k32

must all be positive. It is seen that (7.60) relax these require-

ments for k31 and k21. This is reasonable since the system with
A

m _ 0 has greater inertia about the 2a and _a axes. The require-

ment _2 > 3 means that the spring must be stiff enough to overcome

the gravity and centrifugal separation forces.

3. Forced Motions

Consider the TRAAC system in the orbit plane (equation (7.57))

with e <_ i, QT3 = Qe = Q_ a 0, i.e., the damping is very small.

Using the usual techniques of steady-state sinusoidal analysis, let

cost = Re[eJ_],sin_ = - Re[je j_] and employ exponentials to analyze

equation (7.57), The result is

m

3k21+ 3rK3-1 -3rK 3

-3r 2 + 3r 2j.
0 -2j _2 4

where Y3 _3 ej_, e == , and _ = --eej_

algebraic equations can be inverted to find

m

I

m

eJ't'o

Y3 '

-j e (7.61)

5

m

These simultaneous

e, _ as functions
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of time. Let us consider this accomplished and require that Y3 _ 0.

Thus we choose the parameters which give Y3 _ 0 according to the

condition that

det

-j -3K3r 0

-j 3r + 2 2j

5 -2j _2 . 4
CZ

= 0

This giv_ a condition on r:

r _

2(6 - _2 )

3(K3+ l) - 4 + i +" K 3j

The response of the system for the condition (7.63) is

(7.62)

(7.63)

y3 = 0

2e
e = - sin

3rK 3

2e(l + 6K 3)

= COS

K3(a2 - 6)

(7.64)

Notice that the vibration absorption condition (7.63) does not

_2 This can be
depend on the body's shape but only on r w K3, 5"

seen by realizing that with Y3 _ 0 the parameter k21 has no effect

in (7.61). One would expect that as K 3 gets large (body gets small

in dimension compared to the length of the satellite (x)) the motions
o

would approach a flexible dumbell's motion; this is indeed the case as

can be verified using (7.64) and (7.57) (letting K 3 _ _ in (7.57)).
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Notice that unless _2 > 3 the system is unstable Equation (7.64)

indicates that for S_ > 4 the motions may get rather large if e,

the eccentricity, is not very small. The motion of e, _ in the

orbit axes makes an elliptical figure assuming e = sin e.

As an example of a system with vibration absorption consider the

following parameters:

I 1 = 22 slug ft 2

12 = 13 = 720 slug ft 2

m = 0.12 slugs

x = 120 ft
o

I' = 1730 slug ft 2

k21 = 0. 973

K3 = I'/I 3 = 2.4

_2 = 4
C_

Using (7.63), the vibration absorption condition, gives r = 0.055,

and the boom length, b = 6.7 ft. This system has a property typical

of systems following (7.63); it has a very short boom compared to the

total length of the system (r << i). If the eccentricity is less than

0.05, the excursions will be less than 39 ft. The design based upon

the vibration absorption condition has the property of very poor

transient response because the coupling between the Y3 motion and

the e, _ motions is small of the order of r 2.
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4. Effect of Damp±n_ on TRAAC

Of the utmost interest in passive attitude control is the time

it takes an oscillation to go from a given initial condition to an

acceptable operating level. If the law of damping were a linear func-

tion of the attitude rates, there would be no problem that could not

be solved by the well-known transient methods. However, in practice

the damping law usually does not even approximate this type behavior;

new methods are required to analyze the damping process. One such

method has b_en described in Chapter VI and will be used in the follow-

ing analysis.

Once we have established a method of calculating the damping re-

sponse, we must ask if, on hueristic grounds, there will be enough

damping force to warrant consideration using quantitative methods.

In the TRAAC system it can be shown that, neglecting torsion of the

spring, there is only very slow convergence in motions out of the

orbit plane (see Section E, Part 5). In practice ferromagnetic rods

were used (FISCHELL l, FISCHELL 2) to damp motion out of the orbit

plane.

As an example of the calculation of the damping response and of

the expected numerical results, we consider the TRAAC orbit plane

motions. We can solve equations (7.57) for arbitrary initial condi-

tions and obtain the result that

T3 = _1 ej(_l_+_l ) + A2 ej(_2 x+_.2 ) + ._3e j (_3_+_3)

(9 A21 Ale j (_°l%+_l) A22 += + ._A..2 e j (°')2_+.2) A23_/Ak.3e J (_°3 %+*3 )

A J (_1%+_i) ./_2e J (c°2%+_2) A3 3./__3 e J (c°3 %+_k3)= A31-' _-i e + A32 +

(7.65)

where the _k are the natural frequencies of (7.57), the Aik are the

" A _k depend only on the initial conditions.'Rode shapes, and the k'

The Aik are found to be
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F-

I A1 k

A2k

1

3k21 + 3K3r - _

3rK 3

2J_k(3k21 + 3K3r - _)

(_2 - 3 - _)(3r K3)

(7.66)

The average energy (or Hamiltonian) in an undamped oscillation can be

calculated from (7.59) as

3

2 L
k=l

, 2 21 _k213 + I= _ % (IA2kl+ IA3kl 2)} (7°67)

1{+ _ 313(k21 + rK 3) - 6rI'A2k + (a 2 - 3)I'lA3k 12

+ 3I'(1 + r) iA2k 12 }

The method of calculating the damping response consists of requiring
A

that the amplitudes J_k vary with time in such a manner that the

rate of change of energy equals the power lost in damping. In equa-

tion form this is

3

-- -H =It ....
T

k=l

(7.68)
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By the sameassumption used in the elastic hysteresis analysis of
the beamsatellite (see 7.47) we can write the expression for the

average power loss in damping of the TRAACas:

_2 I'_
: 2_A_2 2_A_2

2 [ _°i IA311 1 + 0J21A321 2

(7.69)

+ _31A331 2_A.2]

Let us now combine (7.68) and (7.69) and equate the coefficients

of J_k to get differential equations of the envelope response. These

&

are (k = 1,2,3)

k +
2E k _0kl A3k I = 0 (7.70)

This equation, because of the quadratic nature of P, is linear in

the A k

-A-k(_) =J__ (o)e-X/Tk
k

where the "time constant," Tk, is given by

2H k

Wk = (7.71)

_2 I' _klA3k 12

The line of reasoning employed here is given in Chapter VI in greater

detail and with more explanation.

As a numerical example of significance the numbers used in the

example on vibration absorption will be used with a different boom

length parameter. These numbers were chosen to approximate those

given for the TRAAC satellite in (FISCHELL 2). The parameters are
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b = I00 ft = boom length

= 20 ft
o

= equilibrium spring length

_s = 0.125 ft = static spring length

m = 0.12 slugs = mass at the end of the spring

I 1 = 22 slug ft 2 = yaw moment of inertia

12 = 13 = 720 slug ft 2 = roll and pitch

moments of inertia

r = 5

I' = 1730 slug ft 2

k21 = 0.973

_2 = 18
(X

K 3 = 2.4

Upon factoring the characteristic equation of (7.57) to find _k we

get, using (7.66) and (7.71), Table 3.

TABLE 3

 ODE

1 1.55 4.3

2 4.23 0.52

3 7.45 ii.0
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The mode shape factors are:

All = AI2 = AI3 = 1

A21 = 1.0

A31 = 0.25 j

A22 = 0.58

A32 = -1.64 j

A23 = -0.46

A33 = 0.17 j

The response to orbit eccentricity forces is given for this example by

Y3 = 1.7e sin

e = l.Te sin

= 4.65e cos

The tests that Fischell, et al. ran on the spring material in-

dicated that half the stored energy in an oscillation was dissipated

in one cycle of oscillation. This implies for a simple oscillator a

phase lag @ = 1/8x. From the table above the longest time constant is,

for @ = 1/8x, T3 = ll x 8_. This is equivalent to a time constant

of 44 orbit periods. This response seems a bit slow and is characteristic

of systems using elastic hysteresis damping. The response can probably

be optimized by trying various parameter combinations and comparing

responses but the upper limit of performance would probably be a time

constant of about lO orbits. Any further improvement in performance

would have to come from an improvement in material damping properties.
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5. Ineffectiveness of Roll-Yaw Damping

The question of whether the elastic hysteresis effect, which

damps pitch oscillations, will also damp roll-yaw oscillations is

important. As it turns out the damping of roll-yaw oscillations by

the spring is of third order in the angles and thus has little effect

for small angle motions. One expects the large oscillations to damp

out to a certain level and then persist without appreciable attenuation

for a long period of time.

Consider viscous damping (to simplify the analysis) which exerts a

force - D d/dtI_ I along the spring. This force would do work 5-W =

- D(d/dtt_I)(5[_I). This distance 14] is expressed in terms of the

generalized coordinates as

where

[_[2 2 b 2= x + - 2bx cos_ (7.72)

#% #%

cos_5 = la-lx = cosl_ cos8 cos'f 2 cosy 3

+ sin# cos_ (cosy I sinr 3 + sinT I siny 2 cosy 3)

+ sing (sinT I siny 3 - cosy I siny 2 cosy 3)

Keeping terms up to second order in cos_ and letting

where _ is the equilibrium spring length we get
0

1 _2cos_ = i -

_2 = (@ + Z2)2 + (0 + r3 )2

2
X

1 2
- o g2 + _ r Xo_

= Xo_ + 2_ °

r = b/g
0

+_
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If it is assumed that the pitch angles and _ have decayed to

zero_ the power loss function for viscous damping becomes for small

angles

2 • 2
P = - x2r2D(_ + y2 ) (_ + _2 ) (7.73)

O

where the above geometrical relations have been used to calculate 8.

If it is further assumed that the motion of the angle Yl' the yaw

angle, is arbitrary and relatively uncoupled from the motion of

and y2 U the motion of the roll angles can be considered separately.

The yaw angle will decay slowly or perhaps there will be a constant

yaw rate that persists for a long time but this eventuality, similar

to the phenomena of Chapter V_,will not seriously alter the deductions

from the results to be given. Consider the response in (7.58) with

YI _ 0 to be of the form

Y2 t 1 1 -/_.iej(_l'I'+_l) (7.74)

l , Aj_.._eJ(_2_+_'l )A21 A22

Using (7.73) and (7.74) we compute the envelope response and the average

power.

j ,k=l, 2

(7.76)

where

by

Gjk = Hk(D/_)r2Gjk and the constants Gjk and Ajk
are given
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24

tOlC_ (_o2+ _°2)C_2"2_p2

E 1
E 2

(2+ 2. 2_2 2 [54u)2) o_ [3 032

E1 E 2

(7.77)

-3r _ = 1 + A21

A2k = 2 (7.78)

4 + 3r - _k _ = 1 + A22

The natural frequencies _k are given after factoring the characteristic

determinant.

A = (p2 + 4 + 3 )(p2 + 4k31 + 3K2r ) . 9r2K2r
(7.79)

The energy coefficients can be computed based on the energy expression

of (7.59). They are

2

r_ = _k _Z + I°lA_k I '
2 (2 - I

+ _- I2(4k31 + 3rK 2) + 6r I' A2k (7°80)

+ I'(4 + 3r)lA2kl2 i

Baj_ed upon the above relations and the parameters (which approximate

those given in FISCHELL 2) the mode shapes and the natural frequencies

can be computed by factoring (7.79) and using (7.78).
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2

e I = 4.1 A21 = - 0.997

2

_2 = 54.9 A22 = 0.42

where,

k31 • = 2.4 ; r = 5= 0.96 , K 2

The parameter _ given in (7.78) is therefore 0,003. This small value

means that the envelope function _ will decay very slowly compared
Jk A

to the decay of J_2" But the response of -/_2 is slow because of

the non-linearity and w therefore, the TRAAC system has sensibly no

damping in yaw-roll for small angles. By decreasing the parameter r

(ratio of length of boom to length of spring) we may increase the

parameter _ while decreasing the power dissipated in yaw_roll, but

the situation also depends upon the parameters K 2 and k31 in a

very interesting manner. Le_ us write the characteristic equation

(7.79) with a root locus of r in the p-plane in mind.

D = (p2 + 4)(p2 ÷ 4 k31) + 3r(1 + K2)(p2 + _) = 0 (7.8_)

2

where _R = 4(K2+k31/I+K2)" The root locus with r as a parameter
2

appears in Fig. 7.9 and a plot of _R vs. K 2 appears in Fig° 7oi0_

It can be seen from the expression for A21 (which we want to be as
2

far away from -i as we can make it) that if the zero at _R is near
2

the point p = 4 then the denominator of A21 will be close to 3r

and, therefore_ A21 will be near to -i. It is clear that in order

to produce good damping we must have k31 as far away from one as

possible and we must not let K 2 be too large. Under these circumstances
2

_R will be about three and decreasing r will have a strong effect of

producing a value of A21 sufficiently far from minus one to provide

some damping for the first mode envelope, _i"
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In order to illustrate the above statements let us take a system
1

with k31 = -- K22 ' = 1, r = 1. For this system the natural fre-

quencies are _ = 2.82, _ = 9.18 and the value of a is 0.28.

This is a much better design for yaw-roll damping but it has two

serious drawbacks. First, the choice of r = 1 does not provide good

coupling for the pitch oscillations and the performance of pitch will

l

suffer measurably. Second, the body shape k31 = _ is impractical

because for the type of vehicles we are considering the boom inertia

is included with the body and therefore we will always have bodies

with 12 _ 13 and with Ii<< 12. The influence of k31 on the

dynamics of the roll motions indicates that the mode of motion near

the natural frequency two is essentially a "dumbell" mode which will

always be important for long, thin satellites of the type we are dis-

cussing.

The above non-linear analysis indicates that practically no damp-

ing due to elastic hysteresis will occur in the roll motions of the

TEAAC system or other systems built on the same pattern. In the TRAAC

system there was an additional mechanism provided for damping the yaw-

roll oscillations. This mechanism was the use of the magnetic hysteresis

effect caused by the interaction of the earth's magnetic field with

ferromagnetic "damping rods." This magnetic damping system damped

the roll-yaw oscillations in about the order of the time for damping

pitch oscillations.

F. CONCLUSIONS

After consideration of the three examples of connected vehicles,

some general conclusions as to their comparative dynamical properties

are in order. It can be demonstrated that each of the three vehicles

is practical for some realistic mission requirements; it seems that

they possess individual properties that may be exploited to advantage

in particular cases. The advantages and disadvantages of the three

examples will be discussed in the succeeding paragraphs.
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The TRAACand Beamsystems, which rely upon hysteresis damping of

elastic vibrations_ tend to dampout natural librations more slowly

than the Vertistat system which uses magnetic hysteresis damping.

This is largely because the magnetic damping forces can be made

effectively larger than those of the elastic material.

The Vertistat has the outstanding feature that it provides con-

siderable yaw stabilization due to its horizontal rod structure. This

problem of yaw damping arises in the vehicle designs with long, pencil-

like shapes because the roll and pitch momentsof inertia are nearly

the same(I2_ 13) , effectively. The TRAACdesign has the drawback
that the spring damper is effective only in pitch; the yaw-roll motions

must be dampedby using other means° The Beamdesign, however, will

damposcillations in both pitch and roll-yaw.

It is clear that the Vertistat design is the most effective of

the systems considered for high performance (damping in the order of

ten orbit periods); however, the Beamsystem looks promising as a

simple damping system for mediumperformance (damping of the order of

fifty orbit periods). The TRAACsystem is the only proven passive

attitude control system; the other systems must be viewed as "second

generation" systems.

In the damping of the motions by any scheme the most important

design feature, for a given damping device, is the coupling of motion

through proper geometrical and mechanical parameter choice. It is

important to choose structural members which are short enough to prop-

erly couple modal motions, and long enough to provide stiffness against

disturbances.

Disturbances due to the orbit eccentricity were found to be of the

order of the eccentricity parameter for the design examples given. In

all cases the roots of the characteristic equations of both pitch and

yaw-roll motions must not be near the orbit frequency. This is true

not only because of eccentricity disturbances but, also because many

disturbances occur at orbit frequency and its harmonics, e.go, solar

radiation effects, magnetic disturbances, aerodynamic torques, etc.
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The vibration absorption designs, which are possible in Vertistat

and TRAACsatellites when they are excited in pitch by orbit motions,

do not seempractical since they imply configurations that have inher-

ently poor coupling between the modes; this leads to poor damping

characteristics in these cases. The vibration absorption idea does,

however, indicate the possibilities for filtering the sinusoidal dis-

turbances by proper design.

The analysis of the Beamsatellite points the way toward flexible-

body analysis for all the designs of passive systems. The assumption

of rigidity must be examined quite closely when designing actual systems.

It would be especially important to examine the lateral vibrations of

the TRAACspring t and also the higher modesof the Beamsatellite.
The effect of higher modestends to diminish in the TRAACand Beam

systems as the size of the mass at the tip of the spring increases.

The analysis of non-rigid motions of these satellites can be carried

out using the techniques given for analyzing the Beammotion combined

with the Rayleigh-Ritz method (STRUTT1).

It has been shownby example that the methods of Chapters If, III,

%_areextremely useful in the analysis of connected satellites with

passive damping. The examples used shed somelight on the properties

of the passive satellite designs and provide a framework for judging

and discussing future designs.
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CI_A_R VI I I o SUI_IARY OF IM_PORT_T RESULTS

This dissertation is an attempt to illuminate the problems of passive

gravity-stabilized satellites by devising appropriate analytical methods,

and by applying these methods to gain insight and quantitative information

upon which to base designs of future satellites.

The results of the study have been given in Chapters II through VI

(analysis) and Chapter VII (application). The contributions can be

classified under the following four headings.

i. Stability Methods

The chapter on stability methods (Chapter III) gives the results

of an application of Lyapunov's direct method to mechanical systems with

damping. The distinction is made between the total energy and the

Hamiltonian so that the choice of the Hamiltonian as a Lyapunov function

will be clearly understood; this distinction is important in the gyro-

scopically-coupled systems studied in later chapters.

Using the Hamiltonian as a Lyapunov function we can prove a theorem

giving the necessary and sufficient conditions for stability of a damped

mechanical system.

A corollary to this important theorem is the result that the stability

or instability of a mechanical system is independent of the functional

form of the power dissipation function as long as _he power into the

system is negative. This means that in the attitude control systems

,vv _ _+_^ _ _.._ power dissipationdiscussed in Chapter _. the _u ...... nal ...... of +h_

function is not a determining factor for stability. The stability of

such systems depends only on the sign definite nature of the Hamiltonian

function about the equilibrium point in question.

The results on the boundedness of the motions of damped systems

and the capture of satellites ("global" questions in contrast to the

local nature of the stability theorems) are useful also in the problem

of the librations of a symmetrical satellite (Chapter V) and in the dis-

cussion of tumbling and capture (Chapters IV and VII).
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2. Motion of a Tumblin_ Satellite

The problem of a satellite tumbling in the gravity field and

under the influence of damping is a new problem which has attracted some

attention of late as a computer problem, but which, to the author's

knowledge, has not been attacked analytically. Chapter IV presents

approximate expressions for the motions of a simple tumbling satellite;

these expressions were derived using the asymptotic methods of non-linear

mechanics. Chapter VII, Section C presents an application of the method

of Chapter IV to the Vertistat satellite tumbling in the pitch plane.

These results show that the time to damp the tumbling motion increases

rapidly with initial tumbling angular velocity.

3. Approximate Time Response of Systems with Light, Non-Linear Damping

Chapter VI presents an asymptotic method for finding the envelope

motions of underdamped systems with non-linear damping forces. The main

results are a set of first-order, non-linear differential equations for

the envelope motions, and a theorem which compliments Rayleigh's theorem

on the dissipation function. The non-linear envelope equations have the

advantages that the oscillation envelope functions are much smoother and

more slowly-varying than the physical variables, and that the damping

forces need not be specified explicitly. This latter observation is the

non-linear compliment to Rayleigh's theorem that the damping forces can

be derived from a single "dissipation function." Our envelope equations

of motion depend only on the knowledge of a single function, the average

power dissipation; this function may be derived from empirical data and

assumptions or from the knowledge of the actual damping forces.

The above envelope response method is applied to a number of non-

linear problems in Chapter VII as well as to two examples in Chapter VI.

The method has the outstanding virtue that it can be applied with little

effort to systems up to three or four envelope variables (sixth or eighth

order).
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4. Application of the Methods of Analysis to Three Systems of Interest

Chapter VII consists of an analytical attack, using the methods

developed for the purpose, upon three interesting satellite designs.

These systems are the Vertistat, Beam, and TRAAC satellites.

The TRAAC and Beam satellites definitely have slower time response

capabilities than the Vertistat. The Beam has the virtue of getting both

pitch and yaw-roll damping from the same damping device. The TRAAC

design gets pitch damping from an elastic hysteresis device and yaw and

roll damping from magnetic damping rods.

The Vertistat has several advantages over the TRAAC and Beam designs,

they are: (a) increased yaw stiffness and damping, due to the horizontal

bars, (b) higher coupling of damper motions with body motions, due to the

horizontal bars and the fact that the coupling torques due to gravity and

inertia are in phase, (c) greater capability for damping because the de-

vice is not dependent upon '_eak" damping forces such as elastic hysteresis.

The Beam system should be a very simple, reliable system for low-

performance missions.
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APPENDIX A: THE NATURE OF THE HAMILTONIAN IN MECHANICS

In mechanics H is defined in terms of the kinetic and potential

energy expressions. This is true by analogy in electromechanics and

electrodynamics but the Hamiltonian form may be present in systems

with no easily identified physical significance. It is useful to trace

the physical significance of H in mechanical systems by deriving the

energy expressions directly from physical reasoning, The kinetic energy

is defined for a system of mechanical particles (non-relativistic) as

M

/V' mk_kT = > . _k (A,1)

__J

k=l

for M particles (for continua we replace the sum by a Riemann-Stieltjes

integral).

The introduction of P holonomic constraints brings the number of

independent variables to N = 3M - P. Thus, R k the position of a

particle_ can be expressed with respect to an inertial reference frame

as

Rk = R k (ql,q2,o..,qNgt) (A.2)

in terms of the N generalized coordinates qi and the time, t.

explicit dependence of the R k on time may arise from rotation of

coordinates or time-varying constraints. We see that:

The

N

Rk r" 8Rk •

N N

l > CZj_l 4 + "T: _ • Z.._ J _

j, _=1 j--i

_Sjqj + T(q) }

(A.3)
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where:

Ocj,_=

M _Rk _

k=l

_j = mk t_ '
k=l

y

k=1

We now form H and get the expression for H in terms of (A.3).

H

H

N

_ _ " - L(q,,_)
m _). qk
k=l qk

N

- _ _-(q) + v(q)

j ,_=I

(A°4)

If we call the homogeneous part of the kinetic energy of degree n in

the velocities, Tn, we have defined:

T2 =

N

1 _ G.C_j,gjqg

j,,_

T1 =

N

V •
/ Bj_j
J

1
T O = _ r(q)
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This leads to the important expression for H in terms of qi' qi:

H = T 2 - T O + V

H= T2+U

(A.5)

where U = V - T O . This expression may be derived by inspection using

Euler's theorem on homogeneous forms (noticing T = T 2 + T 1 + TO).

T O is the same term that in vector mechanics gives the centripetal

acceleration on a particle while rounding a curve0 The terms T 1 and

T O arise due to the expression of the equations of motion in a non-

inertial reference frame, e.g., a rotating frame.

Let us notice that the total energy T + V is in general different

from H. This difference is

E - H = T 1 + 2 T O
(A.6)

and is in general not a constant. Thus, there is a fundamental dis-

tinction that must be made between E 9 the total energy, and H, the

Hamiltonian. If _Rk/_t = 0 then R k = Rk(q) (no rotations or time

dependent constraints), and T = T 2. In this case E = H and the

Hamiltonian is the total energy. It is possible for _Rk/_t d 0 and

_H/_t = 0; this occurs often in practice in cases of rotations of

coordinate frames. It is just these cases that are of interest in space

mechanics of satellites; here the total energy is never conserved --

even in the absence of damping.

Let us add an additional coordinate onto the q-space such that this

coordinate, 4, does not appear explicitly in the expression for L.

We may therefore write, quite generally:

N

r = T2 + r 1 + r o + aj_l j +

j---1

(A.7)
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where T2, TI, and TO are as before and where

Rk = Rk(ql'q2"'''qN' _f t)
P

% N N-

k=l

M _R k _R k

_ - _c = _ N- " t?-i'--
k--1

Using the Routhian procedure (IAkNCZOS i) to eliminate the cyclic

coordinate, 4, we get the Routhian, R.

R = T 2 + T1 + T O - c2 _2 (A. 8)

Using the notation of subscripts to denote the degrees of homogeneity

of the forms in q1 we get

where

R = R2 + R1 + R 0

1
R2 = T2 " 2--T

RI = TI -

N

_ ajakqjq k

N j ,k=l

L aj_lj(p, - b)

j=l

2c

(P_ - b) 2

RO = TO - 2c
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The symbol p_ denotes a constant of the motion, the momentum about

the "_/ " "axzs. Having eliminated the variable _ from the expression

for the Routhianp R_ which is the new "kinetic energy" we get the

equations of motionp given as

d

dt

\
5R _ 5R _V

(A.9)

with _ determined by the expression p_ = _T/3_ . We see that al-

though _ has been eliminated from consideration we still have the

equations of motion in Lagrangian (and thus Hamiltonian) form. We

may operate with R in place of T and derive H. This gives us

expressions corresponding to (A.5) and (A.6).

H = R2 + U = R2 + V - R0

(PT- b)2
U = V - T O + 2c

E - H = T 1 + 2T 0 + (p - b)_

These equations show that there is a difference between the total energy

and H in the case of cyclic coerdinates even if T1 . TO = O. These

systems in which there are cyclic coordinates or rotating coordinates

may be properly called "gyroscopic" because they are mathematically

analogous to the equations of a gyroscope.

?

-160-



APPENDIXB: THEMETHODOF AVERAGING

The method of averaging has been used in various forms for many

years, notably in celestial mechanics. In recent years the Russian

school of '_ifferential equationists" has used the method and developed

its rigorous foundations. The modern version of the method of averag-

ing is largely due to the work of N. Krylov, N. Bogoliubov, and Y. A.

Mitropolsky (KRYLDV l, BOGOLIUBOV 1); for this reason the method of

averaging is often called the KBM method.

Consider a differential equation with a small parameter, _,

dx = f(x,t;_) (B.I)
dt

where x is an n-vector, f is an n-vector function of x and t

(time) with a parameter _. If the function @(t,p), where p is an

arbitrary vector constant of integration, can be found such that it

satisfies the equation

_5_ = f(@,t;0) (B.2)

then @ is called a "generating solution" for equation (B.I). From

we will hope to form power series approximations in _ to the equa-

tion (B.D.

If we allow the constant vector p to vary with time _nus"" accounting

for the perturbations due to _ d 0) for _ _ 0 we can arrive at a

differential equation in p as follows.

dx de _ _@(t;p) + _@(t;p)
d-_ = dt at 8p

_f 2

= f(@,t;_) = f(@,t;0) + _ _ (Z,t;0) + _ .....
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where the symbolism _0/_p stands for the hessian matrix _j/_Pi"

Using (B.2) in the above gives the resulting differential equation

in p.

dt - _p " _ _

This equation is of the form

(B.3)

dp
= _F(p,t;_) (B.4)

dt

which is the "standard form" of Bogoliubov and Mitropolsky. Because

is small we expect that dp/dt will be small and therefore p varies

slowly with time. Assume that F(p,t;_) can be expanded in a trigono-

metric series in the following manner.

F(p,t;_) = F (p;_) +
o

N

Z Fk(P;_)eJ_kt

k=-N

k_0

(B.5)

If we define the notation

T

i5F (p;_) = lim _ F(p,t;_)dt
o T-*co

0

N

N Z Fk(P;_) JWktF (p,t;_) = e

J_k
R=-N

kgO

(B.6)

where F is the time average of F(p,t;_) with p held constant,o

then the first approximation to the solution to the differential equation

(B.4) is

N

P = _(t) + _ F(_,t;_) (B.7)
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If
where the "secular equation" for _(t), the "average p, is

d_

dt ¢)

(B.S)

Notice that _(t) is the result of (B.8), the differential equation

of the standard form with its right-hand side averaged with respect

to time.

To determine the accuracy of the above first approximation, sub-

stitute (B.7) and (B.8) into (B.4) and evaluate the remaining "error

terms, e°

N

d-7= d-T+ _ _ " d-7+ _ / FkC_;_)e
k=-N

N

Fk( _; _) ej_kt

k=-N

2
+ _F( t_O) • F(_,t;O) + _ (g,t;O)

• FO(_;0) ] +, ........

This shows that the error in satisfaction of the differential equations

2
(B.4) by the approximation (B.7) and (B.8) is of order in _ .
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The method of averaging forms the basis of the approximations used

in Chapters IV and VI. The basic first approximation given above can

be extended to solutions which asymptotically converge to the correct

solution (BOGOLIUBOV i, Chapters V and VI).

-164-



APPENDIX C: HAMIL_"Y)N'S PRINCIPLE FOR CONTINUOUS AND DISCRETE SYSTE_viS

For certain mechanical problems involving the interaction of rigid

bodies (finite number of degrees of freedom) with continuous elastic

members (infinite number of degrees of freedom) it is convenient to use

Hamilton's principle and the Calculus of Variations to derive the

differential equations of motion (mixed set of partial and ordinary

differential equations). This will be done in this appendix.

Let us consider Hamilton's principle stated in the form of a theorem

in which the following notation is useful.

L
@ • .

= L(qi ,qi, aj, aj ,bj ,bj ,_j ,CZj,_j ,_j, t)

qi

J

t _---

S

a °

2

b °

3

J

_j

= the part of the Lagrangian involving only

the generalized coordinates of the dis-

crete system

Z(q i,_i,aj,aj,bj,bj,c_j,&j,_j,_j,_j " ''
= the Lagrangian density, involving the

generalized coordinates of the discrete

system and those of the continuous system

as well.

qi (t) = generalized coordinates of the discrete

system where (i = 1,2,...,N)

= generalized coordinates of the continuous

part of the system as functions of time and

the space variable, s. (j = 1,2,...,M.)

time (t I < t _< t 2)

space coordinate (independent variable) (0 < s < 4)
-- m

_ (0,t) = generalized coordinate at the boundary point
9

_j(_pt)
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_¢

J

_j =

_2_.
,|

_j =

Theorem (Hamilton's Principle): For the dynamical system described by

the generalized coordinates q ,a.,b.,fi_ p_ ,@ (i = 1,2,...,N)(j=I,2,o..,M)
z J J_j_j j

and the generalized forces QipA.wB./_p • the motion is des-
J J J J j'

,$

cribed by the "action integral p I w given by

t2 _ t2

I = ,] L dt + _ ds dt (C.l)

5
o t I

in such a manner as to Satisfy the "principle of virtual work" accord-

ing to the expression

t2,

i,j t 1 (C. 2)

where the variations (see LANCZOS I) are taken under the assumption of

fixed end points in time but variable end points in space (s) and

where the second term of (C.2) represents the virtual work done by

external forces.

The use of the theorem in arriving at the differential equations

of motion is of interest here. Let us take variations of the first

integral in (Col) and integrate by parts (using the fact that the

variations of qf a, b, _p _p_ yanish at the points t = t I and

t = t 2.
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+

t 2 t 2

5 fLat= _/ [_L_qi dtd _L ]_lidt

t 1 i tI _

t 2 t 2

-- 5a .dt +
_aj dt j . 8%

J t I J t I

t 2 t 2

J t I J J t I

(c.3)

d _L ] 5b.St
dt _G. a

O

_L d _L ] 8_.dt
 gj- dt

The variation of the second term of (C.1) is

':/: //{f
8 d sdt = dt ds _. _Oj +

t 1 o t 1 o j

5¢'. J _¢,: a
J J

(C.4)

+ J
J J

+ [terms identical to (C.3) with J _ dt

as the Lagrangian.] o

Integrating the first five terms of (C.4) by parts in both s and t

and collecting terms to form expression (C.2) gives the principle of

virtual work in coordinate form.

N t2

i=l tI _(li dt

+

-167-



M t2

j=l t z o

()b2 _,

_s 2 _¢_

+ ----- _ + 5_f

_t_s _; J J

j=l tI bl_; , . bl_j
s-_O

(C.5)

J J

A. } 5a.dt
J J

t

+
j:l t I _0{t'3 -_ _.;:- _ _-_._=_

-I-?

" d-'_ j,, j

M t2 i,

+2 /f
j:l t I _ _g'3 s--O

+ _<_. <,_ _ + ,}_<_.<,,
3 J

+iirj _ ___:+
j=l tI

_(_j _j

= 0
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t_A

where we have defined _= L + _/ _ dSo

0

F-ltuating the terms multiplying the variations (independent) 5b, 5_,

5q, 5a, 5_, 5¢ to zero by the fundamental lemma of the Caiculus of

Variations (_NCZOS 1) gives us the differential equations of the con-

tinuous system, the discrete system, and the boundary conditions.

d
- Qi (Co6)

dt _i _i

dt _j _j, _Oj _s _

= q_.(s,t)
J

(Ca7)

_: 8s - _
J

d

_a. dt
J

_A +A }Sa =0
_&. J J

J

(C.8)

J s=_

d

_b. dt
J

(C.9)

-169-



-- + -- - _----z

,. bg_' s =0 ba.o

(ColO)

s=_ _j dt ._j

= o (c.11)

Equation (Co6) are the equations governing the discrete degrees of

freedom° Equation (C.7) are the partial differential equations governing

the continuous system. Equations (C.8), _C.9), (C.IO) 9 (Coll) are

boundary conditions on the space variables _.o These boundary condi-
J

tions are either simple algebraic relations, if the variables a_ b, _

are constants, or differential equations (natural end conditions)_ if

the variations 5a_ 5b_ 5_ 8_ do not vanish°

In the problem of Chapter VII of the equations of the beam satel]ite

the equations (Co6) govern the rigid body and Q. are rigid body torques_
1

(Co7) governs the beam motion, and the end conditions are "built-in _

at one end (5_p 5_ = O) and are "natural" at the other end° (C.10)

and (toll) govern the motion of the end mass,
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